Learn how to predict click-through rates on ads and implement basic machine learning models in Python so that you can see how to better optimize your ads.
Have you ever wondered how companies like Facebook and Google are able to serve you surprisingly targeted ads that you occasionally click? Well, behind the scenes, they are running sophisticated machine learning models and using rich user data to predict the click-through rate (CTR) for every user who sees those ads. This course will teach you how to implement basic models in Python so that you can see how to better optimize ads with machine learning. Using real-life ad data you’ll learn how to engineer features, build machine learning models using those features, and evaluate your models in the context of CTR prediction. By the end of this course, you’ll have a strong understanding of how you can apply machine learning to make your ads more effective.
Have you ever wondered how companies like Facebook and Google are able to serve you surprisingly targeted ads that you occasionally click? Well, behind the scenes, they are running sophisticated machine learning models and using rich user data to predict the click-through rate (CTR) for every user who sees those ads. This course will teach you how to implement basic models in Python so that you can see how to better optimize ads with machine learning. Using real-life ad data you’ll learn how to engineer features, build machine learning models using those features, and evaluate your models in the context of CTR prediction. By the end of this course, you’ll have a strong understanding of how you can apply machine learning to make your ads more effective.