Learn how to take the Python workflows you currently have and easily scale them up to large datasets without the need for distributed computing environments.
Python is now well established as a major platform for data analysis and data science. For many data scientists, the largest limitation of Python is that all data must fit into the resident memory of the available workstation. Further, traditionally, Python has only been able to utilize one CPU. Data scientists constantly ask, "How can I read and process large amounts of data?" and "How can I make use of more computational processing resources?" This course will introduce you to Dask, a flexible parallel computing library for analytic computing. With Dask, you will be able to take the Python workflows you currently have and easily scale them up to large datasets on your workstation without the need to migrate to a distributed computing environment.
Python is now well established as a major platform for data analysis and data science. For many data scientists, the largest limitation of Python is that all data must fit into the resident memory of the available workstation. Further, traditionally, Python has only been able to utilize one CPU. Data scientists constantly ask, "How can I read and process large amounts of data?" and "How can I make use of more computational processing resources?" This course will introduce you to Dask, a flexible parallel computing library for analytic computing. With Dask, you will be able to take the Python workflows you currently have and easily scale them up to large datasets on your workstation without the need to migrate to a distributed computing environment.