This course focuses on feature engineering and machine learning for time series data.
Time series data is ubiquitous. Whether it be stock market fluctuations, sensor data recording climate change, or activity in the brain, any signal that changes over time can be described as a time series. Machine learning has emerged as a powerful method for leveraging complexity in data in order to generate predictions and insights into the problem one is trying to solve. This course is an intersection between these two worlds of machine learning and time series data, and covers feature engineering, spectograms, and other advanced techniques in order to classify heartbeat sounds and predict stock prices.
Time series data is ubiquitous. Whether it be stock market fluctuations, sensor data recording climate change, or activity in the brain, any signal that changes over time can be described as a time series. Machine learning has emerged as a powerful method for leveraging complexity in data in order to generate predictions and insights into the problem one is trying to solve. This course is an intersection between these two worlds of machine learning and time series data, and covers feature engineering, spectograms, and other advanced techniques in order to classify heartbeat sounds and predict stock prices.