Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

DataCamp

Bayesian Regression Modeling with rstanarm

via DataCamp

Overview

Learn how to leverage Bayesian estimation methods to make better inferences about linear regression models.

Bayesian estimation offers a flexible alternative to modeling techniques where the inferences depend on p-values. In this course, you’ll learn how to estimate linear regression models using Bayesian methods and the rstanarm package. You’ll be introduced to prior distributions, posterior predictive model checking, and model comparisons within the Bayesian framework. You’ll also learn how to use your estimated model to make predictions for new data.

Syllabus

  • Introduction to Bayesian Linear Models
    • A review of frequentist regression using lm(), an introduction to Bayesian regression using stan_glm(), and a comparison of the respective outputs.
  • Modifying a Bayesian Model
    • Learn how to modify your Bayesian model including changing the number and length of chains, changing prior distributions, and adding predictors.
  • Assessing Model Fit
    • In this chapter, we'll learn how to determine if our estimated model fits our data and how to compare competing models.
  • Presenting and Using a Bayesian Regression
    • In this chapter, we'll learn how to use the estimated model to create visualizations of your model and make predictions for new data.

Taught by

Jake Thompson

Reviews

4.8 rating at DataCamp based on 11 ratings

Start your review of Bayesian Regression Modeling with rstanarm

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.