Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
In this course, you will:
• Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network.
• Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data.
• Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions.
• Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class.
The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models.
This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models.
Syllabus
- Functional APIs
- Compare how the Functional API differs from the Sequential API, and see how the Functional API gives you additional flexibility in designing models. Practice using the functional API and build a Siamese network!
- Custom Loss Functions
- Loss functions help measure how well a model is doing, and are used to help a neural network learn from the training data. Learn how to build custom loss functions, including the contrastive loss function that is used in a Siamese network.
- Custom Layers
- Custom layers give you the flexibility to implement models that use non-standard layers. Practice building off of existing standard layers to create custom layers for your models.
- Custom Models
- You can build off of existing models to add custom functionality. This week, extend the TensorFlow Model Class to build a ResNet model!
- Bonus Content - Callbacks
- Custom callbacks allow you to customize what your model outputs or how it behaves during training. This week, implement a custom callback to stop training once the callback detects overfitting.
Taught by
Laurence Moroney and Eddy Shyu