Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Embark on a journey through the exciting world of machine learning, starting with the foundations of Python programming. You'll begin by mastering Python’s essential data types, loops, and decision-making constructs, gaining a strong coding foundation. As you progress, you’ll dive into machine learning, exploring how it mimics human learning, processes datasets, and applies critical concepts like outliers, model training, and overfitting.
The course then transitions into an in-depth exploration of Random Forest, a powerful machine learning algorithm. You’ll learn how to implement Random Forest using Python libraries like NumPy and Pandas, visualize data with Matplotlib, and perform crucial steps like data cleaning, handling missing values, and converting categorical data to numeric forms. By the end of this course, you'll have hands-on experience in building and optimizing machine learning models, particularly using Random Forest, to solve complex problems.
Designed for both beginners and those looking to deepen their understanding of machine learning, this course combines theory with practical application. Each concept is reinforced with real-life projects, enabling you to see firsthand how machine learning algorithms can be applied to various datasets. Whether you're interested in a career in data science or looking to enhance your programming skills, this course offers the tools and knowledge to succeed.
This course is for you if you want to learn how to program in Python for machine learning or want to make a predictive analysis model. It is for someone who is an absolute beginner and has truly little or even zero ideas of machine learning or wants to learn random forest from zero to hero.