Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

DeepLearning.AI

Building Agentic RAG with LlamaIndex

DeepLearning.AI via Coursera

Overview

Join our new short course and learn from Jerry Liu, co-founder and CEO at LlamaIndex to start using agentic RAG, a framework designed to build research agents skilled in tool use, reasoning, and decision-making with your data. In this course: 1. Build the simplest form of agentic RAG – a router. Given a query, the router will pick one of two query engines, Q&A or summarization, to execute a query over a single document. 2. Add tool calling to your router agent where you will use an LLM to not only pick a function to execute but also infer an argument to pass to the function. 3. Build a research assistant agent. Instead of tool calling in a single-shot setting, an agent is able to reason over tools in multiple steps. 4. Build a multi-document agent where you will learn how to extend the research agent to handle multiple documents. Unlike the standard RAG pipeline—suitable for simple queries across a few documents—this intelligent approach adapts based on initial findings to enhance further data retrieval. You’ll learn to develop an autonomous research agent, enhancing your ability to engage with and analyze your data comprehensively. You’ll practice building agents capable of intelligently navigating, summarizing, and comparing information across multiple research papers from arXiv. Additionally, you’ll learn how to debug these agents, ensuring you can guide their actions effectively. Explore one of the most rapidly advancing applications of agentic AI!

Syllabus

  • Building Agentic RAG with LlamaIndex
    • Join our new short course and learn from Jerry Liu, co-founder and CEO at LlamaIndex to start using agentic RAG, a framework designed to build research agents skilled in tool use, reasoning, and decision-making with your data.In this course: 1. Build the simplest form of agentic RAG – a router. Given a query, the router will pick one of two query engines, Q&A or summarization, to execute a query over a single document. 2. Add tool calling to your router agent where you will use an LLM to not only pick a function to execute but also infer an argument to pass to the function. 3. Build a research assistant agent. Instead of tool calling in a single-shot setting, an agent is able to reason over tools in multiple steps. 4. Build a multi-document agent where you will learn how to extend the research agent to handle multiple documents. Unlike the standard RAG pipeline—suitable for simple queries across a few documents—this intelligent approach adapts based on initial findings to enhance further data retrieval. You’ll learn to develop an autonomous research agent, enhancing your ability to engage with and analyze your data comprehensively.You’ll practice building agents capable of intelligently navigating, summarizing, and comparing information across multiple research papers from arXiv. Additionally, you’ll learn how to debug these agents, ensuring you can guide their actions effectively. Explore one of the most rapidly advancing applications of agentic AI!

Taught by

Jerry Liu

Reviews

4.9 rating at Coursera based on 18 ratings

Start your review of Building Agentic RAG with LlamaIndex

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.