Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

IBM

Machine Learning with Python

IBM via Cognitive Class

Overview

This Machine Learning with Python course dives into the basics of machine learning using an approachable, and well-known, programming language. You'll learn about Supervised vs Unsupervised Learning, look into how Statistical Modeling relates to Machine Learning, and do a comparison of each.Look at real-life examples of Machine learning and how it affects society in ways you may not have guessed!Explore many algorithms and models:
  • Popular algorithms: Classification, Regression, Clustering, and Dimensional Reduction.
  • Popular models: Train/Test Split, Root Mean Squared Error, and Random Forests.
Get ready to do more learning than your machine!

Syllabus

Module 1 - Supervised vs Unsupervised Learning
  • Machine Learning vs Statistical Modelling
  • Supervised vs Unsupervised Learning 
  • Supervised Learning Classification 
  • Unsupervised Learning 
Module 2 - Supervised Learning I
  • K-Nearest Neighbors 
  • Decision Trees 
  • Random Forests
  • Reliability of Random Forests 
  • Advantages & Disadvantages of Decision Trees 
  Module 3 - Supervised Learning II
  • Regression Algorithms 
  • Model Evaluation 
  • Model Evaluation: Overfitting & Underfitting
  • Understanding Different Evaluation Models 
 Module 4 - Unsupervised Learning
  • K-Means Clustering plus Advantages & Disadvantages 
  • Hierarchical Clustering plus Advantages & Disadvantages 
  • Measuring the Distances Between Clusters - Single Linkage Clustering 
  • Measuring the Distances Between Clusters - Algorithms for Hierarchy Clustering
  • Density-Based Clustering 
Module 5 - Dimensionality Reduction & Collaborative Filtering
  • Dimensionality Reduction: Feature Extraction & Selection 
  • Collaborative Filtering & Its Challenges 

Reviews

5.0 rating, based on 1 Class Central review

Start your review of Machine Learning with Python

  • Yaragani Narendhar
    I would not recommend the Kindle edition because of the formatting of the book. All the equations, inline and standalone, are too small to read. The graphs are too small to read. You have to double click on each one to zoom in. Then you click to go…

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.