Chemical Engineering Thermodynamics 2
Korea Advanced Institute of Science and Technology via Coursera
-
158
-
- Write review
Overview
An appreciation of thermodynamics is required to become a chemical and biomolecular engineer. Thermodynamics can assess the viability of a process and is one of the curriculum's most essential topics. The principles are utilized in following engineering courses (kinetics, mass transfer, design, materials) and are applicable to numerous engineering disciplines. The increased emphasis on energy usage and transformation as a result of rising demand, diminishing supply, and global warming necessitates that the engineers who will tackle these issues have a firm grasp of thermodynamics.
The first and second laws will be studied in this course. Non-ideal features of single-component and multicomponent systems will be emphasized. A substantial portion of the course is devoted to solution thermodynamics, which is crucial for separations (e.g., distillation, extraction, membranes), and chemical equilibrium, which is crucial for reaction engineering.
"A theory is more striking when its premises are simpler, when it relates more diverse types of things, and when its scope of applicability is broader. Consequently, the profound impact that classical thermodynamics had on me. It is the only physical theory with universal content that I am confident, within the range of its applicability, will never be overthrown."
— Albert Einstein
Syllabus
- Week 1
- Week 2
- Week 3
- Week 4
- Week 5
- Week 6
- Week 7
- Week 8
Taught by
Dong-Yeun Koh