Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

École Polytechnique Fédérale de Lausanne

Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications

École Polytechnique Fédérale de Lausanne via edX

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!

This physics course covers the physical principles of major in vivo bio-imaging modalities and the different imaging techniques.

After a short study of ultrasound imaging, you will learn about the different X-ray imaging techniques. The understanding of the interaction of X-rays with tissue will lead to the study of three different techniques:

  • Computed Tomography (CT)
  • Emission Tomography
  • Positron Emission Tomography (PET)

This course shows how existing physical principles transcend into bio-imaging and establish an important link into life sciences, illustrating the contributions physics can make to life sciences. Practical examples will be shown to illustrate the respective imaging modality, its use, premise and limitations, and biological safety will be touched upon.

During this course, you will develop a good understanding of the mechanisms leading to tissue contrast of the bio-imaging modalities covered in this course, including the inner workings of the scanner and how they define the range of possible biomedical applications. You will be able to judge which imaging modality is adequate for specific life science needs and to understand the limits and promises of each modality.

To learn more about biomedical imaging, join us in the second part of this course Biomedical Imaging: Magnetic Resonance Imaging (MRI).

Syllabus

  1. Introduction to the course, importance and essential elements of bio-imaging.
  2. Ultrasound imaging; ionizing radiation and its generation.
  3. X-ray imaging - when the photon bumps into living tissue, radioprotection primer.
  4. Computed tomography - from projection to image.
  5. Emission tomography - what are tracers and how to trace them in your body, x-ray detection, scintillation principle.
  6. Positron emission tomography (PET) - imaging anti-matter annihilation.
  7. Tracer kinetics - modeling of imaging data.

Taught by

Rolf Gruetter

Reviews

4.6 rating at edX based on 5 ratings

Start your review of Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.