Completed
Schwarz P, Schwarz
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Zero Mean Curvature Surfaces in Euclidean and Lorentz-Minkowski 3-Space - Lecture 1
Automatically move to the next video in the Classroom when playback concludes
- 1 Zero mean curvature surfaces in Euclidean and Lorentz-Minkowski 3-space Lecture 1
- 2 Volume of hypersurfaces
- 3 The first variation of the volume
- 4 The second variation of the volume
- 5 Stability
- 6 Stability of the catenoid
- 7 Stable minimal surface v.s. area-minimizing surface
- 8 Graph hypersurface
- 9 The Bernstein problem
- 10 Examples of minimal surface
- 11 Scherk' minimal surfaces before Weierstrass
- 12 Weierstrass representation
- 13 The first and second fundamental forms, the Gauss map
- 14 The period problem
- 15 Period problem
- 16 Symmetry
- 17 Example minimal surfaces of finite total curvature
- 18 Example Singly periodic minimal surfaces
- 19 Example Doubly periodic minimal surfaces
- 20 Example Triply periodic minimal surfaces
- 21 New triply periodic minimal surfaces
- 22 Schwarz P, Schwarz
- 23 Limit of Schwarz P, Schwarz D: a -
- 24 Limit of Schwarz P, Schwarz D: a - 1
- 25 Minimal surfaces of finite total curvature
- 26 The Osserman inequality
- 27 Examples which satisfy the equality n 3
- 28 The case n 2
- 29 Nonorientable minimal surfaces
- 30 The Gauss map
- 31 deg
- 32 Example: Mobius strip degg = 3
- 33 Example: Klein bottle-{1 pt} degg = 4 M = 2, W
- 34 Q&A