Completed
Hyper Parameters
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Scaling Machine Learning Pipelines in Cloud
Automatically move to the next video in the Classroom when playback concludes
- 1 Intro
- 2 About Salman
- 3 Giveaway
- 4 Agenda
- 5 Who is this talk for
- 6 Training Models
- 7 Docker
- 8 Where can we run Kubernetes
- 9 Benefits of Kubernetes
- 10 Scaling Pipelines with Kubernetes
- 11 Introducing Kubernetes
- 12 Data Science Machine Learning Engineers
- 13 Kubernetes tools
- 14 Operators
- 15 Fashion mnist
- 16 Neural Network
- 17 Hyper Parameters
- 18 Auto ML
- 19 Serving
- 20 kubeflow
- 21 Why Kubernetes
- 22 Data Science and Machine Learning
- 23 QFlow Pipeline
- 24 MiniCube
- 25 Python Pipeline SDK
- 26 GPU Pipeline
- 27 GPU Worker
- 28 Experimenting
- 29 Running the pipeline
- 30 Kale
- 31 Notebook
- 32 Kubernetes Extension
- 33 Adding Labels
- 34 Creating a Pipeline
- 35 Scaling Pipelines
- 36 Kubernetes Autoscaling
- 37 Considerations
- 38 Platform Management
- 39 OpenAI
- 40 Summary
- 41 References
- 42 Thanks
- 43 Outro