Robust Deep Learning Under Distribution Shift

Robust Deep Learning Under Distribution Shift

Simons Institute via YouTube Direct link

Error bound

20 of 33

20 of 33

Error bound

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Robust Deep Learning Under Distribution Shift

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 Outline
  3. 3 Standard assumptions
  4. 4 Adversarial Misspellings (Char-Level Attack)
  5. 5 Curated Training Task Fail to Represent Reality
  6. 6 Feedback Loops
  7. 7 Impossibility absent assumptions
  8. 8 Detecting and correcting for label shift with black box predictors
  9. 9 Motivation 1: Pneumonia prediction
  10. 10 Epidemic
  11. 11 Motivation 2: Image Classification
  12. 12 The test-Item effect
  13. 13 Domain Adaptation - Formal Setup
  14. 14 Label Shift (aka Target Shift)
  15. 15 Contrast with Covariate Shift
  16. 16 Black Box Shift Estimation (BBSE)
  17. 17 Confusion matrices
  18. 18 Applying the label shift assumption...
  19. 19 Consistency
  20. 20 Error bound
  21. 21 Detection
  22. 22 Estimation error (MNIST)
  23. 23 Black Box Shift Correction (CIFAR10 w IW-ERM)
  24. 24 A General Pipeline for Detecting Shift
  25. 25 Non-adversarial image perturbations
  26. 26 Detecting adversarial examples
  27. 27 Covariate shift + model misspecification
  28. 28 Implicit bias of SGD on linear networks w. linearly separable data
  29. 29 Impact of IW on ERM decays over MLP training
  30. 30 Weight-Invariance after 1000 epochs
  31. 31 L2 Regularization v Dropout
  32. 32 Deep DA / Domain-Adversarial Nets
  33. 33 Synthetic experiments

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.