Probability

Probability

Lawrence Leemis via YouTube Direct link

Introduction

1 of 417

1 of 417

Introduction

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Probability

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction
  2. 2 Monty Hall (Let's Make a Deal) Problem
  3. 3 The birthday problem
  4. 4 Univariate data set
  5. 5 Bivariate data set
  6. 6 Bivariate data set
  7. 7 Multivariate data set
  8. 8 Simple linear regression
  9. 9 Enumeration vs. counting
  10. 10 Multiplication rule
  11. 11 Multiplication Rule -- Example 1
  12. 12 Multiplication Rule -- Example 2
  13. 13 Multiplication Rule -- Example 3
  14. 14 Multiplication Rule -- Example 4
  15. 15 Multiplication Rule -- Example 5
  16. 16 Multiplication Rule -- Example 6
  17. 17 Permutations
  18. 18 Permutations -- Example 1
  19. 19 Permutations -- Example 2
  20. 20 Circular Permutations -- Example 1
  21. 21 Circular Permutations -- Example 2
  22. 22 Nondistinct permutations
  23. 23 Nondistinct Permutations -- Example 1
  24. 24 Nondistinct Permutations -- Example 2
  25. 25 Nondistinct Permutations -- Example 3
  26. 26 Nondistinct Permutations -- Example 4
  27. 27 Combinations
  28. 28 Combinations -- Example 1
  29. 29 Combinations -- Example 2
  30. 30 Combinations -- Example 3
  31. 31 Combinations -- notes
  32. 32 Partitioning -- Example 1
  33. 33 Partitioning -- Example 2
  34. 34 Partitioning -- Example 3
  35. 35 Partitioning -- Example 4
  36. 36 Counting techniques -- unifying example
  37. 37 Set theory
  38. 38 Operations on sets
  39. 39 Venn diagrams -- Example 1
  40. 40 Venn diagrams -- Example 2
  41. 41 Set theory -- notes
  42. 42 Set theory -- application
  43. 43 Probability introduction
  44. 44 Random experiments
  45. 45 Sample spaces
  46. 46 Sample space classification
  47. 47 Sample space subsets -- events
  48. 48 Approaches for calculating probabilities
  49. 49 Relative frequency approach to estimating probability
  50. 50 Relative frequency approach (limiting case)
  51. 51 Subjective approach to estimating probability
  52. 52 Classical approach to calculating probability
  53. 53 Probability axioms
  54. 54 Complementary probability
  55. 55 Probability result concerning subsets
  56. 56 Probability of unions of events
  57. 57 Computing probabilities -- Example 1
  58. 58 Computing probabilities -- Example 2
  59. 59 Computing probabilities -- Example 3
  60. 60 Computing probabilities -- Example 4
  61. 61 Computing probabilities -- Example 5
  62. 62 Computing probabilities -- Example 6
  63. 63 Computing probabilities -- Example 7
  64. 64 Computing probabilities -- Example 8
  65. 65 Computing probabilities -- Example 9
  66. 66 Computing probabilities -- Example 10
  67. 67 Computing probabilities -- Example 11
  68. 68 Conditional probability -- Example 1
  69. 69 Conditional probability -- Example 2
  70. 70 Conditional probability notes
  71. 71 Conditional probability -- Example 3
  72. 72 Rule of elimination -- law of total probability
  73. 73 Conditional probability -- Example 4
  74. 74 Rule of Bayes
  75. 75 Rule of Bayes -- Example 1
  76. 76 Rule of Bayes -- Example 2
  77. 77 Independence
  78. 78 Independence -- Example 0
  79. 79 Independence -- Example 1
  80. 80 Mutual independence
  81. 81 Independence in a series system
  82. 82 Independence in a parallel system
  83. 83 Independence -- Example 2
  84. 84 Random variables
  85. 85 Discrete random variable definition
  86. 86 Discrete random variables -- Example 1
  87. 87 Probability mass functions
  88. 88 Discrete random variables -- Example 2
  89. 89 Discrete random variables -- Example 3
  90. 90 Discrete random variables -- Example 4
  91. 91 Discrete random variables -- Example 5
  92. 92 Discrete random variables -- Example 6
  93. 93 Discrete random variables -- Example 7
  94. 94 Discrete random variables -- Example 8
  95. 95 Discrete random variable summary
  96. 96 Continuous random variables introduction
  97. 97 Probability density functions
  98. 98 Continuous random variables -- Example 0
  99. 99 Continuous random variables -- Example 1
  100. 100 Continuous random variables -- Example 2
  101. 101 Classifying random variables
  102. 102 Mixed random variables
  103. 103 Continuous random variables summary
  104. 104 Cumulative distribution function definition
  105. 105 Cumulative distribution function notes
  106. 106 Cumulative distribution function conversion
  107. 107 Cumulative distribution functions -- Example 1
  108. 108 Cumulative distribution functions -- Example 2
  109. 109 Cumulative distribution functions -- Example 3
  110. 110 Cumulative distribution functions -- Example 4
  111. 111 Cumulative distribution functions -- Example 5
  112. 112 Cumulative distribution function of a mixed random variable
  113. 113 Cumulative distribution function topics
  114. 114 Percentiles
  115. 115 Percentiles -- Example 1
  116. 116 Percentiles -- Example 2
  117. 117 Percentiles -- Example 3
  118. 118 Random variate generation
  119. 119 Random variate generation -- Example 1
  120. 120 Random variate generation -- Example 2
  121. 121 Transformations of random variables
  122. 122 Transformations of random variables -- Example 1
  123. 123 Transformations of random variables -- Example 2
  124. 124 APPL introduction
  125. 125 APPL -- Example 1
  126. 126 APPL data structure
  127. 127 APPL -- Example 2
  128. 128 APPL -- Example 3
  129. 129 APPL -- Example 4
  130. 130 Mixtures
  131. 131 Mixtures -- Example 1
  132. 132 Mixtures application
  133. 133 Continuous mixtures
  134. 134 Expectation
  135. 135 Expectation -- Example 1
  136. 136 Expectation -- Example 2
  137. 137 Expectation -- Example 3
  138. 138 Expectation -- Example 4
  139. 139 Expectation -- Example 5
  140. 140 Expectation -- Example 6
  141. 141 Expectation -- Example 7
  142. 142 Expectation -- Example 8
  143. 143 Expectation -- Example 9
  144. 144 Measures of central tendency
  145. 145 Measures of central tendency -- Example 1
  146. 146 Population mode definition
  147. 147 Population mean summary
  148. 148 Expectation topics
  149. 149 Expectation of a constant
  150. 150 Expectation of a constant times a random variable
  151. 151 Expectation of a function of a random variable -- Example 1
  152. 152 Expectation of a function of a random variable -- Example 1
  153. 153 Expectation of the function of a random variable -- Example 1
  154. 154 Expectation of a constant times a function of a random variable
  155. 155 Expectation of the sum of two functions of a random variable
  156. 156 Population variance definition
  157. 157 Notes on population variance
  158. 158 Population variance shortcut formula
  159. 159 Population variance -- Example 1
  160. 160 Population variance of aX+b
  161. 161 Population variance corollaries
  162. 162 Moment definition
  163. 163 Standardized random variables
  164. 164 Skewness
  165. 165 Kurtosis
  166. 166 Skewness and kurtosis -- Example 1
  167. 167 Moment generating function definition
  168. 168 Using moment generating functions to generate moments
  169. 169 Moment generating functions -- Example 1
  170. 170 Moment generating functions -- Example 2
  171. 171 Characteristic functions
  172. 172 Conditional expectation
  173. 173 Markov's inequality
  174. 174 Markov's inequality -- Example 1
  175. 175 Chebyshev's inequality
  176. 176 Chebyshev's inequality -- Example 1
  177. 177 Common discrete distributions
  178. 178 Bernoulli distribution definition
  179. 179 Bernoulli trials
  180. 180 Bernoulli distribution moments
  181. 181 Bernoulli distribution summary
  182. 182 Binomial distribution definition
  183. 183 Binomial distribution notes
  184. 184 Binomial distribution mean
  185. 185 Binomial distribution moments
  186. 186 Binomial distribution shape
  187. 187 Binomial distribution -- Example 1
  188. 188 Binomial distribution -- Example 2
  189. 189 Binomial distribution calculations in R
  190. 190 Binomial distribution -- Example 3
  191. 191 Binomial distribution -- Example 4
  192. 192 Binomial distribution -- Example 5
  193. 193 Binomial distribution summary
  194. 194 Geometric distribution definition
  195. 195 Geometric distribution existence conditions
  196. 196 Geometric distribution cumulative distribution function
  197. 197 Geometric distribution memoryless property
  198. 198 Geometric distribution moment generating function
  199. 199 Geometric distribution population mean
  200. 200 Geometric distribution moments
  201. 201 Geometric distribution -- Example 1
  202. 202 Geometric distribution definition
  203. 203 Geometric distribution -- Example 2
  204. 204 Negative binomial distribution
  205. 205 Negative binomial moment generating function
  206. 206 Negative binomial distribution -- Example 1
  207. 207 Negative binomial distribution
  208. 208 Negative binomial distribution -- Example 2
  209. 209 Poisson distribution introduction
  210. 210 Poisson approximation to the binomial distribution
  211. 211 Poisson distribution definition
  212. 212 Poisson distribution moment generating function
  213. 213 Poisson distribution -- Example 1
  214. 214 Poisson processes introduction
  215. 215 Poisson processes illustrations
  216. 216 Poisson process notation
  217. 217 Poisson process counting function
  218. 218 Poisson processes -- Example 1
  219. 219 Poisson process time between arrivals
  220. 220 Poisson process superpositioning
  221. 221 Poisson process decomposition
  222. 222 Poisson processes and order statistics
  223. 223 Poisson process summary
  224. 224 Poisson distribution -- Horse kick data
  225. 225 Hypergeometric distribution introduction
  226. 226 Hypergeometric distribution
  227. 227 Hypergeometric distribution support
  228. 228 Hypergeometric distribution moments
  229. 229 Hypergeometric distribution -- Example 1
  230. 230 Discrete uniform distribution
  231. 231 Discrete uniform distribution -- Example 1
  232. 232 Benford's law -- Benford distribution
  233. 233 Zipf distribution
  234. 234 Zipf distribution -- Example 1
  235. 235 Mixture distribution
  236. 236 Discrete distribution summary
  237. 237 Common continuous distributions
  238. 238 Uniform distribution
  239. 239 Uniform distribution cumulative distribution function
  240. 240 Uniform distribution moment generating function
  241. 241 Uniform distribution moments
  242. 242 Uniform distribution -- Example 1
  243. 243 Uniform distribution -- Example 2
  244. 244 Uniform distribution -- Example 3
  245. 245 Uniform distribution -- Example 4
  246. 246 Uniform distribution -- Example 5
  247. 247 Uniform distribution -- Example 6
  248. 248 Exponential distribution definition
  249. 249 Exponential distribution rate parameter
  250. 250 Exponential distribution cumulative distribution function
  251. 251 Exponential distribution memoryless property
  252. 252 Exponential distribution moment generating function
  253. 253 Exponential distribution moments
  254. 254 Gamma function
  255. 255 Exponential distribution -- Example 1
  256. 256 Exponential distribution -- Example 2
  257. 257 Exponential distribution -- Example 3
  258. 258 Exponential distribution -- Example 4
  259. 259 Exponential distribution summary
  260. 260 Gamma Distribution Definition
  261. 261 Gamma distribution moment generating function
  262. 262 Gamma distribution moments
  263. 263 Gamma distribution special cases
  264. 264 Gamma distribution -- Example 1
  265. 265 Gamma distribution summary
  266. 266 Normal distribution introduction
  267. 267 Normal distribution history
  268. 268 Normal distribution properties
  269. 269 Normal distribution computations
  270. 270 Normal distribution moment generating function
  271. 271 Normal distribution Y = a + bX result
  272. 272 Normal distribution Z = (X - mu) / sigma
  273. 273 Normal distribution Y = ((X - mu) / sigma) ^ 2 result
  274. 274 Normal distribution -- Example 1
  275. 275 Normal distribution -- Example 2
  276. 276 Other continuous distributions
  277. 277 Beta distribution
  278. 278 Beta function
  279. 279 Beta distribution mean
  280. 280 Beta distribution moments
  281. 281 Beta distribution -- Example 1
  282. 282 Beta distribution -- Example 2
  283. 283 Triangular distribution
  284. 284 Triangular distribution cumulative distribution function
  285. 285 Triangular distribution moments
  286. 286 Triangular distribution -- Example 1
  287. 287 Weibull Distribution
  288. 288 Weibull distribution moments
  289. 289 Weibull distribution -- Example 1
  290. 290 Continuous distributions summary
  291. 291 Multivariate distributions introduction
  292. 292 Bivariate distribution introduction
  293. 293 Bivariate distributions -- Automobile illustration
  294. 294 Bivariate distribution definition
  295. 295 Bivariate distribution pmf/pdf
  296. 296 Bivariate distributions -- Example 1
  297. 297 Bivariate distributions -- Example 2
  298. 298 Bivariate distributions -- Example 3
  299. 299 Bivariate distributions -- Example 4
  300. 300 Bivariate distributions -- Example 5
  301. 301 Bivariate distributions notation
  302. 302 Bivariate distributions cumulative distribution functions
  303. 303 Bivariate distributions cumulative distribution functions -- Example 1
  304. 304 Bivariate distributions; marginal distributions
  305. 305 Bivariate distributions; marginal distributions -- Example 1
  306. 306 Bivariate distributions; marginal distributions -- Example 2
  307. 307 Bivariate distributions; marginal distributions -- Example 3
  308. 308 Bivariate distributions; conditional distributions
  309. 309 Bivariate distributions; conditional distributions -- Example 1
  310. 310 Bivariate distributions; conditional distributions -- Example 2
  311. 311 Bivariate distribution summary
  312. 312 Bivariate random variables independence definition
  313. 313 Bivariate random variables independence -- Example 1
  314. 314 Bivariate random variables independence -- Example 2
  315. 315 Bivariate random variables independence result
  316. 316 Bivariate random variables independence -- Example 3
  317. 317 Bivariate random variables independence -- Example 4
  318. 318 Bivariate random variables expected value definition
  319. 319 Bivariate random variables expected value -- Example 1
  320. 320 Bivariate random variables expected value -- Example 2
  321. 321 Bivariate random variables expected value E[g(X) + h(Y)]
  322. 322 Bivariate random variables expected value E[g(X) h(Y)]
  323. 323 Bivariate random variables expected value topics outline
  324. 324 Covariance definition
  325. 325 Covariance -- Example 1
  326. 326 Covariance notes
  327. 327 Covariance shortcut formula
  328. 328 Covariance -- Example 2
  329. 329 Covariance result V[X + Y] = V[X] + V[Y] + 2 Cov(X, Y)
  330. 330 Covariance and independence
  331. 331 Correlation definition
  332. 332 Correlation results
  333. 333 Correlation lies between -1 and 1
  334. 334 Correlation -- Example 1
  335. 335 Conditional expectation definition
  336. 336 Conditional expectation -- Example 1
  337. 337 Conditional expectation -- Example 2
  338. 338 Conditional expectation -- Example 3
  339. 339 Conditional expectation notes
  340. 340 Bivariate distributions; moment generating functions
  341. 341 Bivariate distributions; marginal moment generating functions
  342. 342 Bivariate normal distribution definition
  343. 343 Bivariate normal distribution level surfaces
  344. 344 Bivariate normal distribution with rho = 0
  345. 345 Bivariate normal distribution marginal distributions
  346. 346 Bivariate normal distribution conditional distributions
  347. 347 Bivariate normal distribution homoscedasticity
  348. 348 Bivariate normal distribution -- Example 1
  349. 349 Bivariate normal distribution moment generating function
  350. 350 Bivariate normal distribution -- Example 2
  351. 351 Bivariate normal distribution matrix approach
  352. 352 Bivariate normal distribution -- Example 3
  353. 353 Bivariate normal distribution summary
  354. 354 Multivariate random variables definition
  355. 355 Multivariate random variables joint pmf/pdf existence conditions
  356. 356 Multivariate distributions -- Example 1
  357. 357 Multivariate distributions -- Example 2
  358. 358 Multivariate distributions: joint cumulative distribution functions
  359. 359 Multivariate distributions: joint cumulative distribution functions -- Example 1
  360. 360 Multivariate distributions: Marginal distributions -- Example 1
  361. 361 Multivariate distributions: Conditional distributions -- Example 1
  362. 362 Multivariate distributions: Independence
  363. 363 Multivariate distributions: Independence -- Example 1
  364. 364 Multivariate distributions: Independence -- Example 2
  365. 365 Multinomial distribution
  366. 366 Multinomial distribution -- Example 1
  367. 367 Multivariate distributions: Expectation
  368. 368 Multivariate distributions: Expected value of a sum
  369. 369 Multivariate distributions: Expected value of a sum -- Example 1
  370. 370 Multivariate distributions: Expected value of a sum -- Example 2
  371. 371 Multivariate distributions: Expected value of a product
  372. 372 Multivariate distributions: Variance of a sum of random variables
  373. 373 Multivariate distributions: Variance of a sum of random variables -- Example 1
  374. 374 Multivariate distributions: Variance of a sum of random variables -- Example 2
  375. 375 Multivariate distributions: Variance of a sum of random variables -- Example 3
  376. 376 Multivariate distributions: Joint moment generating functions
  377. 377 Multivariate distributions: Matrix representation -- Example 1
  378. 378 Multivariate distributions: Matrix representation -- Example 2
  379. 379 Multivariate normal distribution
  380. 380 Multivariate normal distribution results
  381. 381 Functions of random variables
  382. 382 Function definition
  383. 383 Functions -- Example 1
  384. 384 Functions: One-to-one
  385. 385 Functions -- Example 2
  386. 386 Functions -- Example 3
  387. 387 Functions: Other varieties
  388. 388 Cumulative distribution function technique
  389. 389 Chapter 7 roadmap
  390. 390 Cumulative distribution technique -- Example 1
  391. 391 Cumulative distribution technique -- Example 2
  392. 392 Cumulative distribution technique -- Example 3
  393. 393 Cumulative distribution technique -- Example 4
  394. 394 Transformation technique for discrete random variables
  395. 395 Transformation technique for discrete random variables -- Example 1
  396. 396 Transformation technique for continuous random variables
  397. 397 Transformation technique for continuous random variables -- Example 1
  398. 398 Transformation technique for bivariate discrete random variables
  399. 399 Transformation technique for bivariate discrete random variables -- Example 1
  400. 400 Transformation technique for bivariate continuous random variables
  401. 401 Transformation technique for bivariate continuous random variables -- Example 1
  402. 402 Transformation technique for bivariate continuous random variables -- Example 2
  403. 403 Transformation technique for bivariate continuous random variables -- Example 3
  404. 404 Order statistics
  405. 405 Order statistics -- Example 1
  406. 406 Order statistics -- Example 2
  407. 407 Order statistics joint distribution result
  408. 408 Order Statistics -- Example 3
  409. 409 Order statistics -- Example 4
  410. 410 Order statistics marginal distributions result
  411. 411 Order statistics special cases
  412. 412 Order statistics -- Example 5
  413. 413 Order statistics -- Example 6
  414. 414 Order statistics -- Example 7
  415. 415 Moment generating function technique
  416. 416 Moment generating function technique -- Example 1
  417. 417 Moment generating function technique -- Example 2

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.