Algebraic Entropy in Combinatorial Dynamical Systems

Algebraic Entropy in Combinatorial Dynamical Systems

Institute for Pure & Applied Mathematics (IPAM) via YouTube Direct link

Intro

1 of 28

1 of 28

Intro

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Algebraic Entropy in Combinatorial Dynamical Systems

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 Cluster algebras: quiver mutations
  3. 3 Cluster algebras: variable dynamics
  4. 4 General T-systems (Nakanishi, 2011)
  5. 5 Bipartite recurrent quivers
  6. 6 Bipartite T-system
  7. 7 Tensor product
  8. 8 Zamolodchikov periodicity
  9. 9 The result
  10. 10 Fixed point
  11. 11 Strictly subadditive labeling
  12. 12 Finite finite quivers
  13. 13 The classification of Zamolodchikov periodic quivers
  14. 14 5 infinite families and 11 exceptional quivers
  15. 15 Four classes of quivers
  16. 16 Example: wild
  17. 17 ADE Dynkin diagrams
  18. 18 Algebraic entropy
  19. 19 Master conjecture
  20. 20 Toric quivers
  21. 21 affine affine classification: 41 infinite, 13 exceptional
  22. 22 A system of equations
  23. 23 Solution
  24. 24 Arborescence formula
  25. 25 Flow description
  26. 26 Flow example
  27. 27 Motivation
  28. 28 Examples: toric digraphs

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.