Deep Learning

Deep Learning

IIT Kharagpur July 2018 via YouTube Direct link

Lecture 30 : Autoencoder Vs. PCA II

31 of 61

31 of 61

Lecture 30 : Autoencoder Vs. PCA II

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Deep Learning

Automatically move to the next video in the Classroom when playback concludes

  1. 1 NPTEL: Deep Learning
  2. 2 Lecture 01 : Introduction
  3. 3 Lecture 02 : Feature Descriptor - I
  4. 4 Lecture 03 : Feature Descriptor - II
  5. 5 Lecture 04 : Bayesian Learning - I
  6. 6 Lecture 05 : Bayesian Learning - II
  7. 7 Lecture 06 : Discriminant Function - I
  8. 8 Lecture 07 : Discriminant Function - II
  9. 9 Lecture 08 : Discriminant Function - III
  10. 10 Lecture 09 : Linear Classifier
  11. 11 Lecture 10 : Linear Classifier - II
  12. 12 Lecture 11 : Support Vector Machine - I
  13. 13 Lecture 12 : Support Vector Machine - II
  14. 14 Lecture 13 : Linear Machine
  15. 15 Lecture 14 : Multiclass Support Vector Machine - I
  16. 16 Lecture 15 : Multiclass Support Vector Machine -II
  17. 17 Lecture 16 : Optimization
  18. 18 Lecture 17 : Optimization Techniques in Machine Learning
  19. 19 Lecture 18 : Nonlinear Functions
  20. 20 Lecture 19 : Introduction to Neural Network
  21. 21 Lecture 20 : Neural Network -II
  22. 22 Lecture 21 : Multilayer Perceptron
  23. 23 Lecture 22 : Multilayer Perceptron - II
  24. 24 Lecture 23 : Backpropagation Learning
  25. 25 Lecture 24 : Loss Function
  26. 26 Lecture 25 : Backpropagation Learning - Example
  27. 27 Lecture 26 : Backpropagation Learning- Example II
  28. 28 Lecture 27 : Backpropagation Learning- Example III
  29. 29 Lecture 28 : Autoencoder
  30. 30 Lecture 29 : Autoencoder Vs. PCA I
  31. 31 Lecture 30 : Autoencoder Vs. PCA II
  32. 32 Lecture 31 : Autoencoder Training
  33. 33 Lecture 32 : Autoencoder Variants I
  34. 34 Lecture 33 : Autoencoder Variants II
  35. 35 Lecture 34 : Convolution
  36. 36 Lecture 35 : Cross Correlation
  37. 37 Lecture 36 : CNN Architecture
  38. 38 Lecture 37 : MLP versus CNN, Popular CNN Architecture: LeNet
  39. 39 Lecture 38 : Popular CNN Architecture: AlexNet
  40. 40 Lecture 39 : Popular CNN Architecture: VGG16, Transfer Learning
  41. 41 Lecture 40 : Vanishing and Exploding Gradient
  42. 42 Lecture 41 : GoogleNet
  43. 43 Lecture 42 : ResNet, Optimisers: Momentum Optimiser
  44. 44 Lecture 43 : Optimisers: Momentum and Nesterov Accelerated Gradient (NAG) Optimiser
  45. 45 Lecture 44 : Optimisers: Adagrad Optimiser
  46. 46 Lecture 45 : Optimisers: RMSProp, AdaDelta and Adam Optimiser
  47. 47 Lecture 46 : Normalization
  48. 48 Lecture 47 : Batch Normalization-I
  49. 49 Lecture 48 : Batch Normalization-II
  50. 50 Lecture 49 : Layer, Instance, Group Normalization
  51. 51 Lecture 50 : Training Trick, Regularization,Early Stopping
  52. 52 Lecture 51 : Face Recognition
  53. 53 Lecture 52 : Deconvolution Layer
  54. 54 Lecture 53 : Semantic Segmentation - I
  55. 55 Lecture 54 : Semantic Segmentation - II
  56. 56 Lecture 55 : Semantic Segmentation - III
  57. 57 Lecture 56: Image Denoising
  58. 58 Lecture 57 : Variational Autoencoder
  59. 59 Lecture 58 : Variational Autoencoder - II
  60. 60 Lecture 59 : Variational Autoencoder - III
  61. 61 Lecture 60 : Generative Adversarial Network

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.