Completed
1.6. Genericity for local exponents.
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Moduli Spaces of Parabolic Connections and Parabolic Bundles and Geometric Langlands by M-H Saito
Automatically move to the next video in the Classroom when playback concludes
- 1 Start
- 2 Moduli spaces of parabolic connections and parabolic bundles and Geometric Langland's
- 3 1. Moduli spaces of A-parabolic connections 1.1. Settings.
- 4 1.2. λ-connections. λ E C.
- 5 λ ≠0: linear connection
- 6 1.3 Residues and local exponents
- 7 1.4. Fuchs relation
- 8 1.6. Genericity for local exponents.
- 9 1.7. Parabolic connections
- 10 1.8. Quasiparabolic bundles.
- 11 1.9. Parabolic stability on quasiparbolic bundles.
- 12 1.10. a-stable v-parabolic connections.
- 13 1.11. Moduli spaces of a- stable parabolic connections and a-stable parabolic Higgs bundles.
- 14 1.12. Existence of algebraic moduli space of a-stable v-parabolic con- connections.
- 15 1.13. As in the similar way,
- 16 1.14. The Moduli space of connections, Painleve VI case.
- 17 1.15. The Moduli space of parabolic Higgs bundles.
- 18 2. DEFORMATION THEORY AND SYMPLECTIC STRUCTURE
- 19 3. Moduli Spaces of Parabolic Bundles
- 20 4. The image of v-parabolic connections For simplicity, we propose the following:
- 21 Theorem 4.1.
- 22 4.1. The coarse moduli for C1 = Pl,
- 23 4.2. C = P1 and t = 1. ... .t;.
- 24 5. A RESULT OF ARINKS AND LYSENKO
- 25 Theorem 5.1 The functor
- 26 Q&A