Machine Learning Fundamentals with Python and R

Machine Learning Fundamentals with Python and R

tutorialsEU via YouTube Direct link

Python Train Test Challenge

29 of 74

29 of 74

Python Train Test Challenge

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Machine Learning Fundamentals with Python and R

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro with my face in it
  2. 2 WHY Machine Learning?
  3. 3 Python or R - which one to choose?
  4. 4 Installing the required tools
  5. 5 Crash Course - our jupyter environment
  6. 6 Installing R and R Studio
  7. 7 Crash Course R and R Studio
  8. 8 Intro Vectors
  9. 9 Intro Data Tables
  10. 10 What is a model?
  11. 11 Problems where machine learning is used
  12. 12 Intuition - Linear Regression
  13. 13 More in Linear Regression
  14. 14 How to support the channel and get even more sweet Machine Learning knowledge
  15. 15 Python import data and draw graphic
  16. 16 Python Linear Regression Part 1
  17. 17 Python Linear Regression Part 2
  18. 18 R Linear Regression Part 1
  19. 19 R Linear Regression Part 2
  20. 20 R Linear Regression Part 3
  21. 21 R Linear Regression Part 4
  22. 22 Excursus - Why Quadratic?
  23. 23 Intro Project - Used Cars Price Prediction
  24. 24 Python sample project
  25. 25 R Sample Solution Used Cars
  26. 26 Train and Test Data Intro
  27. 27 Python Train Test Part 1
  28. 28 Python Train Test Part 2
  29. 29 Python Train Test Challenge
  30. 30 R Train Test Part 1
  31. 31 R Train Test Part 2
  32. 32 R Train Test Challenge
  33. 33 Intuition Linear Regression multiple variables part 1
  34. 34 Intuition Linear Regression multiple variables part 2
  35. 35 Python Linear Regression multiple variables part 1
  36. 36 Python Linear Regression multiple variables part 2
  37. 37 R Linear Regression multiple variables
  38. 38 R squared part 1
  39. 39 R squared part 2
  40. 40 Python R2 calculation
  41. 41 Python Compare Models via R2
  42. 42 R - R2 Calculation
  43. 43 R - Compare models with R2
  44. 44 Intro Project R2
  45. 45 Python Project R2 calculation
  46. 46 R Project calculate R2
  47. 47 Data Types Part 1
  48. 48 Numerica and Nominal data
  49. 49 Ordinal Data
  50. 50 Python working with nominal data
  51. 51 Python linear regression with nominal data
  52. 52 R Nominal Data and linear regression
  53. 53 Why can we get rid of a column?
  54. 54 Polynomial Regression Part 1
  55. 55 Polynomial Regression Part 2
  56. 56 Python Polynomial Regression Part 1
  57. 57 Python Polynomial Regression Part 2
  58. 58 R Polynomial Regression Part 1
  59. 59 R Polynomial Regression Part 2
  60. 60 Practice Project Diamond Data
  61. 61 Python Sample Solution Diamonds
  62. 62 R Sample Solution Diamonds
  63. 63 R Vectors and Matrices
  64. 64 R - Access Elements of Vectors
  65. 65 R - Naming Elements
  66. 66 R - Matrices
  67. 67 R - Naming Matrices
  68. 68 R - Datatables
  69. 69 Vectorizing Calculations
  70. 70 Why Numpy
  71. 71 Numpy Arrays
  72. 72 Numpy Arrays application
  73. 73 Numpy Matrices
  74. 74 NP Where Function

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.