Machine Learning for Beginners - Data Scientists and Analysts

Machine Learning for Beginners - Data Scientists and Analysts

Shashank Kalanithi via YouTube Direct link

3.1.0 How to know when to use ML -

4 of 41

4 of 41

3.1.0 How to know when to use ML -

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Machine Learning for Beginners - Data Scientists and Analysts

Automatically move to the next video in the Classroom when playback concludes

  1. 1 1.3.0 Machine Learning in 4 Lines of Code -
  2. 2 2.0.0 Machine Learning Basics -
  3. 3 3.0.0 Machine Learning in Business -
  4. 4 3.1.0 How to know when to use ML -
  5. 5 3.2.0 Ethics in Machine Learning -
  6. 6 4.1.0 Holistically Designing A ML Algorithm Using CRISP-DM -
  7. 7 4.2.0 Business Understanding and Data Understanding -
  8. 8 4.3.0 Data Preparation -
  9. 9 4.4.0 Modeling -
  10. 10 4.4.1 Determining Which Model to Use -
  11. 11 4.4.2 Implementing a Model -
  12. 12 4.5.0 Evaluation -
  13. 13 5.0.0 Data Cleaning and Environment Setup -
  14. 14 5.1.0 Setting up and Environment -
  15. 15 5.2.0 Data Cleaning Techniques -
  16. 16 5.2.2 Basic Data Format -
  17. 17 5.2.3 Remove Columns with One Unique Value -
  18. 18 5.2.4 Data Types -
  19. 19 5.2.5 Parsing Dates -
  20. 20 5.2.6 Missing Data -
  21. 21 5.2.7 Select Target Column -
  22. 22 5.2.8 Data Encoding -
  23. 23 5.2.9 Multicollinearity -
  24. 24 5.2.10 Feature Engineering -
  25. 25 5.2.11 Scaling -
  26. 26 5.2.12 Train Test Split -
  27. 27 6.0.0 Regression -
  28. 28 6.1.0 Data Cleaning: Regression -
  29. 29 6.2.0 Model Selection: Regression -
  30. 30 6.3.1 Linear Regression -
  31. 31 6.3.2 Random Forest Regression -
  32. 32 6.3.3 XGBoost Regression -
  33. 33 6.4.0 Hyperparameter Tuning -
  34. 34 7.0.0 Classification Practice -
  35. 35 7.2.1 Logistic Regression -
  36. 36 7.2.2 Random Forest Classifier -
  37. 37 7.2.3 LightGBM -
  38. 38 7.3.0 Model Evaluation: Classification -
  39. 39 7.3.1 Confusion Matrix -
  40. 40 7.3.2 Area Under the Curve AUC -
  41. 41 7.3.3 F1 Score -

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.