Completed
machine learning in earth science
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Machine Learning and Earth System Modeling - From Parameter Calibration to Feature Detection
Automatically move to the next video in the Classroom when playback concludes
- 1 Introduction
- 2 Carbon Cycle
- 3 Land Models
- 4 Basic Setup
- 5 Training Data
- 6 Input Parameters
- 7 Feature Input Parameters
- 8 parameter distributions
- 9 parameter uncertainty
- 10 leverage
- 11 motivation
- 12 machine learning in earth science
- 13 climate net project
- 14 climate model output
- 15 atmospheric river detection
- 16 single input field
- 17 front detection
- 18 labeled data
- 19 seasonal front crossing
- 20 validation
- 21 delta
- 22 jet response
- 23 precipitation extremes
- 24 dipole response
- 25 seasonal response
- 26 extreme precipitation
- 27 SmartSim
- 28 Earth System Data Science Initiative
- 29 Summary
- 30 Parameters