Completed
3.3 Stochastic Gradient Descent (UvA - Machine Learning 1 - 2020)
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Machine Learning 1 - 2020
Automatically move to the next video in the Classroom when playback concludes
- 1 1.2 What Is Machine Learning (UvA - Machine Learning 1 - 2020)
- 2 1.3 Types Of Machine Learning (UvA - Machine Learning 1 - 2020)
- 3 1.4 Probability Theory Bayes (UvA - Machine Learning 1 - 2020)
- 4 1.5 Probability Theory: Example (UvA - Machine Learning 1 - 2020)
- 5 2.1 Expectation Variance (UvA - Machine Learning 1 - 2020)
- 6 2.2 Gaussian (UvA - Machine Learning 1 - 2020)
- 7 2.3 Maximum Likelihood (UvA - Machine Learning 1 - 2020)
- 8 2.4 Maximum Likelihood: Example (UvA - Machine Learning 1 - 2020)
- 9 2.5 Maximum A Posteriori (UvA - Machine Learning 1 - 2020)
- 10 2.6 Bayesian Prediction (UvA - Machine Learning 1 - 2020)
- 11 3.1 Linear Regression With Basis Functions (UvA - Machine Learning 1 - 2020)
- 12 3.2 Linear Regression Via Maximum Likelihood (UvA - Machine Learning 1 - 2020)
- 13 3.3 Stochastic Gradient Descent (UvA - Machine Learning 1 - 2020)
- 14 3.4 Underfitting Overfitting (UvA - Machine Learning 1 - 2020)
- 15 3.5 Regularized Least Squares (UvA - Machine Learning 1 - 2020)
- 16 4.1 Model Selection (UvA - Machine Learning 1 - 2020)
- 17 4.2 Bias Variance Decomposition (UvA - Machine Learning 1 - 2020)
- 18 4.3 Gaussian Posteriors (UvA - Machine Learning 1 - 2020)
- 19 4.4 Sequential Bayesian Learning (UvA - Machine Learning 1 - 2020)
- 20 4.5 Bayesian Predictive Distributions (UvA - Machine Learning 1 - 2020)
- 21 5.1 Equivalent Kernel (UvA - Machine Learning 1 - 2020)
- 22 5.2 Bayesian Model Comparison (UvA - Machine Learning 1 - 2020)
- 23 5.3 Model Evidence Approximation and Empirical Bayes (UvA - Machine Learning 1 - 2020)
- 24 5.4 Classification With Decision Regions (UvA - Machine Learning 1 - 2020)
- 25 5.5 Decision Theory (UvA - Machine Learning 1 - 2020)
- 26 5.6 Probabilistic Generative Models (UvA - Machine Learning 1 - 2020)
- 27 6.1 Probabilistic Generative Modeling: Maximum Likelihood (UvA - Machine Learning 1 - 2020)
- 28 6.2 Probabilistic Generative Modeling: Discrete Data (UvA - Machine Learning 1 - 2020)
- 29 6.3 Discriminant Functions (UvA - Machine Learning 1 - 2020)
- 30 6.4 Discriminant Functions: Least Squares Regression (UvA - Machine Learning 1 - 2020)
- 31 6.5 Discriminant Functions: The Perceptron (UvA - Machine Learning 1 - 2020)
- 32 7.1 Classification With Basis Functions (UvA - Machine Learning 1 - 2020)
- 33 7.2 Probabilistic Discriminative Models: Logistic Regression (UvA - Machine Learning 1 - 2020)
- 34 7.3 Logistic Regression: Stochastic Gradient Descent (UvA - Machine Learning 1 - 2020)
- 35 7.4 Logistic Regression: Newton Raphson (UvA - Machine Learning 1 - 2020)
- 36 8.1 Neural Networks (UvA - Machine Learning 1 - 2020)
- 37 8.2 Neural Networks: Universal Approximation Theorem (UvA - Machine Learning 1 - 2020)
- 38 8.3 Neural Networks: Losses (UvA - Machine Learning 1 - 2020)
- 39 8.4 Neural Networks: Stochastic Gradient Descent (UvA - Machine Learning 1 - 2020)
- 40 8.5 Neural Networks: Backpropagation (UvA - Machine Learning 1 - 2020)
- 41 9.1 Unsupervised Learning: Latent Variable Models (UvA - Machine Learning 1 - 2020)
- 42 9.2 K-Means Clustering (UvA - Machine Learning 1 - 2020)
- 43 9.3 Intermezzo: Lagrange Multipliers (UvA - Machine Learning 1 - 2020)
- 44 9.4 Gaussian Mixture Models And Expectation Maximization (UvA - Machine Learning 1 - 2020)
- 45 10.1 Principal Component Analysis: Maximum Variance (UvA - Machine Learning 1 - 2020)
- 46 10.2 Principal Component Analysis: Minimal Reconstruction Error (UvA - Machine Learning 1 - 2020)
- 47 10.3 Probabilistic Principal Component Analysis (UvA - Machine Learning 1 - 2020)
- 48 10.4 Non-Linear Principal Component Analysis (UvA - Machine Learning 1 - 2020)
- 49 11.1 Kernelizing Linear Models (UvA - Machine Learning 1 - 2020)
- 50 11.2 The Kernel Trick (UvA - Machine Learning 1 - 2020)
- 51 11.3 Support Vector Machines: Maximum Margin Classifiers (UvA - Machine Learning 1 - 2020)
- 52 11.4 Intermezzo: Inequality Constraint Optimization (UvA - Machine Learning 1 - 2020)
- 53 11.5 Support Vector Machines: Kernel SVM (UvA - Machine Learning 1 - 2020)
- 54 11.6 Support Vector Machines: Soft-Margin Classifiers (UvA - Machine Learning 1 - 2020)
- 55 12.1 Some Properties Of Gaussian Distributions (UvA - Machine Learning 1 - 2020)
- 56 12.2 Kernelizing Bayesian Regression (UvA - Machine Learning 1 - 2020)
- 57 12.3 Gaussian Processes (UvA - Machine Learning 1 - 2020)
- 58 12.4 Gaussian Processes With An Exponential Kernel (UvA - Machine Learning 1 - 2020)
- 59 12.5 Gaussian Processes: Regression (UvA - Machine Learning 1 - 2020)
- 60 13.1 Model Combination Methods Vs Bayesian Model Averaging (UvA - Machine Learning 1 - 2020)
- 61 13.2 Bootstrapping And Feature Bagging (UvA - Machine Learning 1 - 2020)
- 62 13.3 Boosting (UvA - Machine Learning 1 - 2020)
- 63 13.4 Decision Trees And Random Forests (UvA - Machine Learning 1 - 2020)