Geometrical Anatomy of Theoretical Physics

Geometrical Anatomy of Theoretical Physics

Frederic Schuller via YouTube Direct link

Classification of sets - Lec 03 - Frederic Schuller

3 of 28

3 of 28

Classification of sets - Lec 03 - Frederic Schuller

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Geometrical Anatomy of Theoretical Physics

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction/Logic of propositions and predicates- 01 - Frederic Schuller
  2. 2 Axioms of set Theory - Lec 02 - Frederic Schuller
  3. 3 Classification of sets - Lec 03 - Frederic Schuller
  4. 4 Topological spaces - construction and purpose - Lec 04 - Frederic Schuller
  5. 5 Topological spaces - some heavily used invariants - Lec 05 - Frederic Schuller
  6. 6 Topological manifolds and manifold bundles- Lec 06 - Frederic Schuller
  7. 7 Differentiable structures definition and classification - Lec 07 - Frederic Schuller
  8. 8 Tensor space theory I: over a field - Lec 08 - Frederic P Schuller
  9. 9 Differential structures: the pivotal concept of tangent vector spaces - Lec 09 - Frederic Schuller
  10. 10 Construction of the tangent bundle - Lec 10 - Frederic Schuller
  11. 11 Tensor space theory II: over a ring - Lec 11 - Frederic Schuller
  12. 12 Grassmann algebra and deRham cohomology - Lec 12 - Frederic Schuller
  13. 13 Lie groups and their Lie algebras - Lec 13 - Frederic Schuller
  14. 14 Classification of Lie algebras and Dynkin diagrams - Lec 14 - Frederic Schuller
  15. 15 The Lie group SL(2,C) and its Lie algebra sl(2,C) - lec 15 - Frederic Schuller
  16. 16 Dynkin diagrams from Lie algebras, and vice versa - Lec 16 - Frederic Schuller
  17. 17 Representation theory of Lie groups and Lie algebras - Lec 17 - Frederic Schuller
  18. 18 Reconstruction of a Lie group from its algebra - Lec 18 - Frederic Schuller
  19. 19 Principal fibre bundles - Lec 19 - Frederic Schuller
  20. 20 Associated fibre bundles - Lec 20 - Frederic Schuller
  21. 21 Conncections and connection 1-forms - Lec 21 - Frederic Schuller
  22. 22 Local representations of a connection on the base manifold: Yang-Mills fields - Lec 22
  23. 23 Parallel transport - Lec 23 - Frederic Schuller
  24. 24 Curvature and torsion on principal bundles - Lec 24 - Frederic Schuller
  25. 25 Covariant derivatives - Lec 25 - Frederic Schuller
  26. 26 Application: Quantum mechanics on curved spaces - Lec 26 - Frederic Schuller
  27. 27 Application: Spin structures - lec 27 - Frederic Schuller
  28. 28 Application: Kinematical and dynamical symmetries - Lec 28 - Frederic Schuller

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.