Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry

Hausdorff Center for Mathematics via YouTube Direct link

Intro

1 of 24

1 of 24

Intro

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Jacob Lurie: A Riemann-Hilbert Correspondence in P-adic Geometry

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 Last Time: Perfectoid Riemann-Hilbert Functors
  3. 3 Perfected Hodge-Tate Crystals
  4. 4 Crystals from the Riemann-Hilbert Functor
  5. 5 The Perfectoid Case
  6. 6 Perfectoidization of Schemes
  7. 7 Properties of the Perfectoidization
  8. 8 A More Concrete Riemann-Hilbert Functor
  9. 9 The Module Structure on RH
  10. 10 Spectral Methods
  11. 11 Computing the Perfectoidization
  12. 12 Affineness of Perfectoidization
  13. 13 Properties of the Riemann-Hilbert Functor
  14. 14 Example: Characteristic p
  15. 15 Mixed Characteristic
  16. 16 Finiteness Theorem
  17. 17 Globalization
  18. 18 Some Rigid Geometry
  19. 19 A Formula for RH
  20. 20 Zavyalov's Theorem
  21. 21 The Primitive Comparison Theorem
  22. 22 Exactness
  23. 23 Duality
  24. 24 Application

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.