Introduction to Algebraic Geometry and Commutative Algebra

Introduction to Algebraic Geometry and Commutative Algebra

IISc Bangalore July 2018 via YouTube Direct link

noc20 ma20 lec31  Consequences of the Correspondence of Ideals

32 of 60

32 of 60

noc20 ma20 lec31  Consequences of the Correspondence of Ideals

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Introduction to Algebraic Geometry and Commutative Algebra

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro Introduction to Algebraic Geometry and Commutative Algebra
  2. 2 noc20 ma20 lec01 Motivation for K algebraic sets
  3. 3 noc20 ma20 lec02 Definitions and examples of Affine Algebraic Set
  4. 4 noc20 ma20 lec03 Rings and Ideals
  5. 5 noc20 ma20 lec04 Operation on Ideals
  6. 6 noc20 ma20 lec05 Prime Ideals and Maximal Ideals
  7. 7 noc20 ma20 lec06 Krull's Theorem and consequences
  8. 8 noc20 ma20 lec07 Module, submodules and quotient modules
  9. 9 noc20 ma20 lec08 Algebras and polynomial algebras
  10. 10 noc20 ma20 lec09 Universal property of polynomial algebra and examples
  11. 11 noc20 ma20 lec10  Finite and Finite type algebras
  12. 12 noc20 ma20 lec11  K Spectrum K rational points
  13. 13 noc20 ma20 lec12 Identity theorem for Polynomial functions
  14. 14 noc20 ma20 lec13 Basic properties of K algebraic sets
  15. 15 noc20 ma20 lec14 Examples of K algebraic sets
  16. 16 noc20 ma20 lec15 K Zariski Topology
  17. 17 noc20 ma20 lec16  The map VL
  18. 18 noc20 ma20 lec17 Noetherian and Artinian Ordered sets
  19. 19 noc20 ma20 lec18 Noetherian induction and Transfinite induction
  20. 20 noc20 ma20 lec19 Modules with Chain Conditions
  21. 21 noc20 ma20 lec20 Properties of Noetherian and Artinian Modules
  22. 22 noc20 ma20 lec21 Examples of Artinian and Noetherian Modules
  23. 23 noc20 ma20 lec22 Finite modules over Noetherian Rings
  24. 24 noc20 ma20 lec23 Hilbert’s Basis TheoremHBT
  25. 25 noc20 ma20 lec24 Consequences of HBT
  26. 26 noc20 ma20 lec25 Free Modules and rank
  27. 27 noc20 ma20 lec26  More on Noetherian and Artinian modules
  28. 28 noc20 ma20 lec27  Ring of FractionsLocalization
  29. 29 noc20 ma20 lec28  Nil radical, contraction of ideals
  30. 30 noc20 ma20 lec29  Universal property of S 1A
  31. 31 noc20 ma20 lec30  Ideal structure in S 1A
  32. 32 noc20 ma20 lec31  Consequences of the Correspondence of Ideals
  33. 33 noc20 ma20 lec32  Consequences of the Correspondence of IdealsContd
  34. 34 noc20 ma20 lec33  Modules of Fraction and universal properties
  35. 35 noc20 ma20 lec34  Exactness of the functor S 1
  36. 36 noc20 ma20 lec35  Universal property of Modules of Fractions
  37. 37 noc20 ma20 lec36  Further properties of Modules and Module of Fractions
  38. 38 noc20 ma20 lec37  Local Global Principle
  39. 39 noc20 ma20 lec38  Consequences of Local Global Principle
  40. 40 noc20 ma20 lec39  Properties of Artinian Rings
  41. 41 noc20 ma20 lec40  Krull Nakayama Lemma
  42. 42 noc20 ma20 lec41  Properties of IK and VL maps
  43. 43 noc20 ma20 lec42  Hilbert’s Nullstelensatz
  44. 44 noc20 ma20 lec43  Hilbert’s NullstelensatzContd
  45. 45 noc20 ma20 lec44  Proof of Zariski’s LemmaHNS 3
  46. 46 noc20 ma20 lec45  Consequences of HNS
  47. 47 noc20 ma20 lec46  Consequences of HNSContd
  48. 48 noc20 ma20 lec47  Jacobson Ring and examples
  49. 49 noc20 ma20 lec48 Irreducible subsets of Zariski TopologyFinite type K algebra
  50. 50 noc20 ma20 lec49  Spec functor on Finite type K algebras
  51. 51 noc20 ma20 lec51  Zariski Topology on arbitrary commutative rings
  52. 52 noc20 ma20 lec52  Spec functor on arbitrary commutative rings
  53. 53 noc20 ma20 lec53  Topological properties of Spec A
  54. 54 noc20 ma20 lec54  Example to support the term “Spectrum”
  55. 55 noc20 ma20 lec55  Integral Extensions
  56. 56 noc20 ma20 lec56  Elementwise characterization of Integral extensions
  57. 57 noc20 ma20 lec57  Properties and examples of Integral extensions
  58. 58 noc20 ma20 lec58  Prime and Maximal ideals in integral extensions
  59. 59 noc20 ma20 lec59  Lying over Theorem
  60. 60 noc20 ma20 lec60  Cohen Siedelberg Theorem

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.