Completed
ReconnaĆ®tre des dessins - Se former Ć Tensorflow 2.0 #15
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Formation Tensorflow 2.0
Automatically move to the next video in the Classroom when playback concludes
- 1 Se former Ć Tensorflow 2.0 #1
- 2 Comment marche un neurone (Perceptron) - Se former Ć Tensorflow 2.0 #2
- 3 La descente de gradient - Se former Ć Tensorflow 2.0 #3
- 4 Les rĆ©seaux de neurones - Se former Ć Tensorflow 2.0 #4
- 5 Coder un simple rĆ©seau de neurone - Se former Ć Tensorflow 2.0 #5
- 6 Normalisation des donnĆ©es - Se former Ć Tensorflow 2.0 #6
- 7 La fonction dāerreur - Se former Ć Tensorflow 2.0 #7
- 8 Jeu dāentrainement, Jeu de validation , Jeu de test - Se former Ć Tensorflow 2.0 #8
- 9 Quelle fonction dāactivation utiliser ? - Se former Ć Tensorflow 2.0 #9
- 10 Utiliser et sauvegarder un modĆØle - Se former Ć Tensorflow 2.0 #10
- 11 Le mode Eager et le mode Graph - Se former Ć Tensorflow 2.0 #11
- 12 EntraĆ®ner un modĆØle - Se former Ć Tensorflow 2.0 #12
- 13 Utiliser le Subclassing - Se former Ć Tensorflow 2.0 #13
- 14 CrĆ©er des layers customisĆ© - Se former Ć Tensorflow 2.0 #14
- 15 ReconnaĆ®tre des dessins - Se former Ć Tensorflow 2.0 #15
- 16 GĆ©rer les donnĆ©es avec tf.data - Se former Ć Tensorflow 2.0 #16
- 17 CrĆ©er un modĆØle Ć Convolution - Se former Ć Tensorflow 2.0 #17
- 18 GĆ©nĆ©rer des poĆØmes de Victor Hugo - Se former Ć Tensorflow 2.0 #18
- 19 Les lots sĆ©quentiels - Se former Ć Tensorflow 2.0 #19
- 20 Le one hot encoding - Se former Ć Tensorflow 2.0 #20
- 21 Coder un rĆ©seau de neurones rĆ©current - Se former Ć Tensorflow 2.0 #21
- 22 GĆ©nĆ©rer des poĆØmes alĆ©atoires (RNN) - Se former Ć Tensorflow 2.0 #22