Fluid Dynamics for Astrophysics

Fluid Dynamics for Astrophysics

NPTEL-NOC IITM via YouTube Direct link

mod08lec41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion

42 of 65

42 of 65

mod08lec41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Fluid Dynamics for Astrophysics

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Fluid Dynamics for Astrophysics
  2. 2 mod01lec01 - Introduction to the course
  3. 3 mod01lec02 - Continuum hypothesis, distribution function and stress-viscosity relation
  4. 4 mod01lec03 - Continuum hypothesis, distribution function and stress-viscosity relation - Recap
  5. 5 mod01lec04 - Fluid Kinematics
  6. 6 mod01lec05 - Fluid Kinematics - Recap
  7. 7 mod02lec06 - Conservation laws: Mass conservation and incomprehensibility
  8. 8 mod02lec07 - Conservation laws: Momentum conservation and Euler equation
  9. 9 mod02lec08 - Conservation laws - Recap
  10. 10 mod02lec09 - Potential flows
  11. 11 mod02lec10 - Bernoulli constant, its applications and voracity equation
  12. 12 mod03lec11 - Recap - Potential flows, Bernoulli constant and its applications
  13. 13 mod03lec12 - Voracity dynamics -- Kelvin's voracity theorem and Magus effect
  14. 14 mod03lec13 - Navier-Stokes equation
  15. 15 mod03lec14 - Navier-Stokes equation (contd.) and energy equation
  16. 16 mod03lec15 - Energy equation in a conservative form
  17. 17 mod03lec16 - Boundary conditions in Navier-Stokes equation, d'Alembert's paradox
  18. 18 mod03lec17 - Poiseuille flow, deriving viscosity from microscopics
  19. 19 mod04lec18 - Dimensionless numbers -- Mach number, Reynolds number
  20. 20 mod04lec19 - Dimensionless numbers
  21. 21 mod04lec20 - Reynolds number and dynamic similarity
  22. 22 mod04lec21 - Reynolds number recap, Low Re flows, and drag on a sphere (Stokes law)
  23. 23 mod04lec22 - High Re flows -- turbulent drag law, vortex shedding and drag crisis
  24. 24 mod05lec23 - Lift on a body, introduction to compressible flows
  25. 25 mod05lec24 - Compressible flows -- derivation of sound speed and dispersion relation
  26. 26 mod05lec25 - Subsonic and supersonic flows
  27. 27 mod05lec26 - Propagation of sonic information, shock tube problem and piston problem
  28. 28 mod05lec27 - Criterion for neglect of compressibility, method of characteristics
  29. 29 mod06lec28 - Shock thickness
  30. 30 mod06lec29 - Shock thickness recap, shock jump conditions
  31. 31 mod06lec30 - Shock jump conditions (contd), transonic 1D flows, converging/diverging channels
  32. 32 mod06lec31 - Coverging/diverging channels, de Laval nozzle and its application to astrophysical jets
  33. 33 mod06lec32 - Spherically symmetric transonic flows
  34. 34 mod06lec33 - Spherically symmetric transonic flows (contd)
  35. 35 mod07lec34 - Solar wind : Parker's solution
  36. 36 mod07lec35 - Solar wind : Modifications in Parker's solution
  37. 37 mod07lec36 - Spherical accretion onto a compact object : Eddington luminosity and accretion rate
  38. 38 mod07lec37 - Spherical accretion onto a compact object : Solutions for flow properties
  39. 39 mod07lec38 - Spherical accretion (contd), disk accretion--Roche lobe overflow
  40. 40 mod08lec39 - Disk accretion : Mass conservation and vertical hydrostatic equilibrium
  41. 41 mod08lec40 - Disk accretion : Removal of angular momentum, Shakura-Sunyaev viscosity parameter
  42. 42 mod08lec41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion
  43. 43 mod08lec42 -Particle acceleration in astrophysical settings:Shocks & non-thermal energy distribution
  44. 44 mod08lec43 - Particle acceleration in astrophysical settings : Diffusive shock acceleration
  45. 45 mod09lec44 - Spherical blast waves : Bomb explosion and supernova explosion
  46. 46 mod09lec45 - Spherical blast waves : Sedov -Taylor solution
  47. 47 mod09lec46 - Spherical blast waves : Sedov - Taylor solution (contd.)
  48. 48 mod09lec47 - Magnetohydrodynamics (MHD) : Introduction
  49. 49 mod09lec48 - Magnetohydrodynamics (MHD) : The induction equation
  50. 50 mod10lec49 - Magnetohydrodynamics(MHD):Currents in MHD, momentum equation and magnetic stress tensor
  51. 51 mod10lec50 - Magnetohydrodynamics (MHD) : Magnetic stresses and magnetic buoyancy
  52. 52 mod10lec51 - Magnetohydrodynamics (MHD): Plasma beta, force-free fields and potential configurations
  53. 53 mod10lec52 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing
  54. 54 mod10lec53 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing (contd.), magnetic dynamos
  55. 55 mod10lec54 - Magnetohydrodynamics (MHD) : Dynamo theory
  56. 56 mod11lec55 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves
  57. 57 mod11lec56 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves and magnetosonic waves
  58. 58 mod11lec57 - Magnetohydrodynamics (MHD) : Waves in MHD - Magnetosonic waves
  59. 59 mod11lec58 - Magnetohydrodynamics (MHD) : Shocks in MHD
  60. 60 mod11lec59 - Magnetohydrodynamics (MHD) : Shocks in MHD - Shock jump conditions
  61. 61 mod12lec60 - Non-ideal MHD : Introduction to magnetic reconnection
  62. 62 mod12lec61 - Non-ideal MHD : Magnetic reconnection - The Sweet-Parker model
  63. 63 mod12lec62 - Non-ideal MHD : Magnetic reconnection - The Petscheck model
  64. 64 mod12lec63 - Sun's atmosphere : Solar corona and the coronal heating problem
  65. 65 mod12lec64 - Solar eruptions : Coronal Mass Ejections (CMEs) and solar flares

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.