Probability & Random Variables

Probability & Random Variables

nptelhrd via YouTube Direct link

Lecture - 1 Introduction to the Theory of Probability

1 of 40

1 of 40

Lecture - 1 Introduction to the Theory of Probability

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Probability & Random Variables

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Lecture - 1 Introduction to the Theory of Probability
  2. 2 Lecture - 2 Axioms of Probability
  3. 3 Lecture - 3 Axioms of Probability (Contd.)
  4. 4 Lecture - 4 Introduction to Random Variables
  5. 5 Lecture - 5 Probability Distributions and Density Functions
  6. 6 Lecture - 6 Conditional Distribution and Density Functions
  7. 7 Lecture - 7 Function of a Random Variable
  8. 8 Lecture - 8 Function of a Random Variable (Contd.)
  9. 9 Lecture - 9 Mean and Variance of a Random Variable
  10. 10 Lecture - 10 Moments
  11. 11 Lecture - 11 Characteristic Function
  12. 12 Lecture - 12 Two Random Variables
  13. 13 Lecture - 13 Function of Two Random Variables
  14. 14 Lecture - 14 Function of Two Random Variables (Contd.)
  15. 15 Lecture - 15 Correlation Covariance and Related Innver
  16. 16 Lecture - 16 Vector Space of Random Variables
  17. 17 Lecture - 17 Joint Moments
  18. 18 Lecture - 18 Joint Characteristic Functions
  19. 19 Lecture - 19 Joint Conditional Densities
  20. 20 Lecture - 20 Joint Conditional Densities (Contd.)
  21. 21 Lecture - 21 Sequences of Random Variables
  22. 22 Lecture - 22 Sequences of Random Variables (Contd.)
  23. 23 Lecture - 23 Correlation Matrices and their Properties
  24. 24 Lecture - 24 Correlation Matrices and their Properties
  25. 25 Lecture - 25 Conditional Densities of Random Vectors
  26. 26 Lecture - 26 Characteristic Functions and Normality
  27. 27 Lecture - 27 Thebycheff Inquality and Estimation
  28. 28 Lecture - 28 Central Limit Theorem
  29. 29 Lecture - 29 Introduction to Stochastic Process
  30. 30 Lecture - 30 Stationary Processes
  31. 31 Lecture - 31 Cyclostationary Processes
  32. 32 Lecture - 32 System with Random Process at Input
  33. 33 Lecture - 33 Ergodic Processes
  34. 34 Lecture - 34 Introduction to Spectral Analysis
  35. 35 Lecture - 35 Spectral Analysis Contd.
  36. 36 Lecture - 36 Spectrum Estimation - Non Parametric Methods
  37. 37 Lecture - 37 Spectrum Estimation - Parametric Methods
  38. 38 Lecture - 38 Autoregressive Modeling and Linear Prediction
  39. 39 Lecture - 39 Linear Mean Square Estimation - Wiener (FIR)
  40. 40 Lecture - 40 Adaptive Filtering - LMS Algorithm

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.