Completed
Introduction
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Denoising and Variational Autoencoders
Automatically move to the next video in the Classroom when playback concludes
- 1 Intro:
- 2 Dimensionality reduction
- 3 Denoising autoencoders
- 4 Variational autoencoders
- 5 Training autoencoders
- 6 Introduction
- 7 Generative models
- 8 Variational autoencoders
- 9 Dataset of images
- 10 Denoising autoencoders
- 11 Linear methods
- 12 A friendly introduction to deep learning and neural networks
- 13 Mapping the real numbers to the interval 0,1
- 14 Sigmoid function
- 15 Perceptron
- 16 Correct noise
- 17 Autoencoders as generators
- 18 Latent space
- 19 Training a neural network - loss function
- 20 Training an autoencoder
- 21 Training autoencoders
- 22 Reconstruction loss Mean squared error
- 23 Reconstruction loss log-loss
- 24 Training a variational auto encoder