Data Science Full Course with SQL and Python for Beginners

Data Science Full Course with SQL and Python for Beginners

Great Learning via YouTube Direct link

Scatter Plot

28 of 86

28 of 86

Scatter Plot

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Data Science Full Course with SQL and Python for Beginners

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction
  2. 2 What is Data Science
  3. 3 Data Science Life Cycle
  4. 4 Data Analyst vs Data Scientist vs Data Engineer
  5. 5 Numpy
  6. 6 Creating and Intializing Numpy Array
  7. 7 Numpy Shape
  8. 8 Joinig Numpy arrays
  9. 9 Numpy Intersection and Differences
  10. 10 Numpy Array Mathematics
  11. 11 Numpy Matrix
  12. 12 Numpy Matrix Transpose and Multiplication
  13. 13 Numpy Save and Load
  14. 14 Pandas
  15. 15 Pandas Series Object
  16. 16 Changing Index
  17. 17 Series object from Dictionary
  18. 18 Extracting Individual Elements
  19. 19 Pandas Dataframe
  20. 20 Creating a Dataframe
  21. 21 Dataframe In-build Function
  22. 22 .iloc and loc function
  23. 23 Dropping Columns
  24. 24 Dropping rows
  25. 25 Matplotlib
  26. 26 Line plot
  27. 27 Bar plot
  28. 28 Scatter Plot
  29. 29 Histogram
  30. 30 Seaborn Line Plot
  31. 31 Seaborn Bar Plot
  32. 32 Seaborn Scatter Plot
  33. 33 Seaborn Histogram/ Distplot
  34. 34 Types of Statistical Analysis
  35. 35 Inferential Statistics
  36. 36 Descriptive Statistics
  37. 37 Measures of Central Tendency
  38. 38 Measures of Variability
  39. 39 Measures of Relationship
  40. 40 Measures of Skewness
  41. 41 Analysis of Variance
  42. 42 ANOVA Define
  43. 43 Grand Mean
  44. 44 F-Ratio
  45. 45 Hypothesis Testing
  46. 46 Types of Hypothesis Testing
  47. 47 Important Terms in Hypothesis Testing
  48. 48 ANOVA vs.T-test
  49. 49 Applications of ANOVA Test
  50. 50 Machine Learning
  51. 51 Supervised Learning
  52. 52 Unsupervised Learning
  53. 53 Reinforcement Learning
  54. 54 Clustering
  55. 55 Examples of Clustering
  56. 56 Need of Clustering
  57. 57 Types of Clustering
  58. 58 K-Means Clustering
  59. 59 Applications of K-means
  60. 60 Deciding value of K
  61. 61 Elbow Method
  62. 62 Implementation of K-means Clustering
  63. 63 Regression
  64. 64 Use case of Regression
  65. 65 Linear Regression
  66. 66 Multi Linear Regression
  67. 67 Types of Linear Regression
  68. 68 Demo - Simple Linear Regression
  69. 69 Demo- Multiple Linear Regression
  70. 70 Logistic Regression
  71. 71 Use Cases of Logistic Regression and its Demo
  72. 72 Installing MySQL
  73. 73 DML Command
  74. 74 DCL Command
  75. 75 TCL Commands
  76. 76 Joins in MySQL
  77. 77 INNER Join
  78. 78 Full Join
  79. 79 SELF Join
  80. 80 Subquery and Types
  81. 81 Demo on Subqueries
  82. 82 ALL Operators
  83. 83 Need of Gen AI in Data Science
  84. 84 Projects on Data Science
  85. 85 Top Data Science Interview Questions
  86. 86 Summary

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.