Design & Analysis of Algorithms

Design & Analysis of Algorithms

nptelhrd via YouTube Direct link

Lecture 19 Longest Common Subsequences

19 of 34

19 of 34

Lecture 19 Longest Common Subsequences

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Design & Analysis of Algorithms

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Lecture - 1 Overview of the course
  2. 2 Lecture - 2 Framework for Algorithms Analysis
  3. 3 Lecture - 3 Algorithms Analysis Framework - II
  4. 4 Lecture - 4 Asymptotic Notation
  5. 5 Lecture -5 Algorithm Design Techniques : Basics
  6. 6 Lecture -6 Divide And Conquer-I
  7. 7 Lecture -7 Divide And Conquer -II Median Finding
  8. 8 Lecture -8 Divide And Conquer -III Surfing Lower Bounds
  9. 9 Lecture -9 Divide And Conquer -IV Closest Pair
  10. 10 Lecture -10 Greedy Algorithms -I
  11. 11 Lecture - 11 Greedy Algorithms - II
  12. 12 Lecture - 12 Greedy Algorithms - III
  13. 13 Lecture - 13 Greedy Algorithms - IV
  14. 14 Lecture - 14 Pattern Matching - I
  15. 15 Lecture - 15 Pattern Matching - II
  16. 16 Lecture -16 Combinational Search and Optimization I
  17. 17 Lecture - 17 Combinational Search and Optimization II
  18. 18 Lecture -18 Dynamic Programming
  19. 19 Lecture 19 Longest Common Subsequences
  20. 20 Lecture -20 Matric Chain Multiplication
  21. 21 Lecture - 21 Scheduling with Startup and Holding Costs
  22. 22 Lecture - 22 Average case Analysis of Quicksort
  23. 23 Lecture - 23 Bipartite Maximum Matching
  24. 24 Lecture - 24 Lower Bounds for Sorting
  25. 25 Lecture -25 Element Distinctness Lower Bounds
  26. 26 Lecture -26 NP-Completeness-I -Motivation
  27. 27 Lecture - 27 NP - Compliteness - II
  28. 28 Lecture - 28 NP-Completeness - III
  29. 29 Lecture - 29 NP-Completeness - IV
  30. 30 Lecture - 30 NP-Completeness - V
  31. 31 Lecture - 31 NP-Completeness - VI
  32. 32 Lecture - 32 Approximation Algorithms
  33. 33 Lecture - 33 Approximation Algorithms
  34. 34 Lecture - 34 Approximation Algorithms for NP

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.