Computational Fluid Dynamics

Computational Fluid Dynamics

IIT Kharagpur July 2018 via YouTube Direct link

Computational Fluid Dynamics by Prof. Suman Chakraborty

1 of 61

1 of 61

Computational Fluid Dynamics by Prof. Suman Chakraborty

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Computational Fluid Dynamics

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Computational Fluid Dynamics by Prof. Suman Chakraborty
  2. 2 Lecture 1 : Introduction to CFD
  3. 3 Lecture 2 : Classification of partial differential equations
  4. 4 Lecture 3 : Examples of partial differential equations
  5. 5 Lecture 4 : Examples of partial differential equations (contd.)
  6. 6 Lecture 5 : Nature of the charateristics of partial differential equation
  7. 7 Lecture 6 : Euler-Lagrangian equation
  8. 8 Lecture 7 : Approximate Solutions of Differential Equations
  9. 9 Lecture 8 : Variational formulation
  10. 10 Lecture 9 : Example of variational formulation and introduction to weighted residual method
  11. 11 Lecture 10 : Weighted Residual Method
  12. 12 Lecture 11 : Point Collocation method, the Galerkin's method & the 'M' form
  13. 13 Lecture 12 : Finite element method (FEM) of discretization
  14. 14 Lecture 13 : Finite element method of discretization (contd.)
  15. 15 Lecture 14 : Finite difference method (FDM) of discretization
  16. 16 Lecture 15 : Well posed boundary value problem
  17. 17 Lecture 16 : Finite volume method (FVM) of discretization
  18. 18 Lecture 17 : Illustrative examples of finite volume method
  19. 19 Lecture 18 : Illustrative examples of finite volume method (contd.)
  20. 20 Lecture 19 : Basic rules of finite volume discretization
  21. 21 Lecture 20 : Implementaion of boundary conditions in FVM
  22. 22 Lecture 21 : Implementation of boundary conditions in FVM (contd.)
  23. 23 Lecture 22 : 1-D Unsteady state diffusion problem
  24. 24 Lecture 23 : 1-D Unsteady state diffusion problem (contd.)
  25. 25 Lecture 24 : Consequences of Discretization of Unsteady State Problems
  26. 26 Lecture 25 : FTCS scheme
  27. 27 Lecture 26 : CTCS scheme (Leap frog scheme) & Dufort-Frankel scheme
  28. 28 Lecture 27 : FV Discretization of 2-D Unsteady State Diffusion
  29. 29 Lecture 28 : Solution to linear algebraic equations (contd.)
  30. 30 Lecture 29 : Elemination methods
  31. 31 Lecture 30 : Gaussian elemination and LU Decomposition methods
  32. 32 Lecture 31 : Illustrative example of elemination method
  33. 33 Lecture 32 : Tri-Diagonal Matrix Algorithm (TDMA)
  34. 34 Lecture 33 : Elimination Methods: Error Analysis
  35. 35 Lecture 34 : Elimination Methods: Error Analysis (Contd.)
  36. 36 Lecture 35 : Iteration methods
  37. 37 Lecture 36 : Generalized analysis of Iteration method
  38. 38 Lecture 37 : Further discussion on Iterative methods
  39. 39 Lecture 38 : Illustrative examples of Iterative methods
  40. 40 Lecture 39 : Gradient Search based methods
  41. 41 Lecture 40 : Steepest descent method (contd.)
  42. 42 Lecture 41 : Conjugate gradient method
  43. 43 Lecture 42 : Convection diffiusion equation
  44. 44 Lecture 43 : Central difference scheme applied to convection-diffusion equation
  45. 45 Lecture 44 : Upwind scheme
  46. 46 Lecture 45 : Illustrative examples
  47. 47 Lecture 46 : Exact solution of 1-D steady state convection diffusion equation (contd.)
  48. 48 Lecture 47 : Exponential scheme
  49. 49 Lecture 48 : Generalized convection diffusion formulation
  50. 50 Lecture 49 : 2-D convection diffusion problem
  51. 51 Lecture 50 : False (numerical) diffusion scheme and the QUICK scheme
  52. 52 Lecture 51 : Discretization of Navier Stokes Equation
  53. 53 Lecture 52 : Discretization of Navier Stokes Equation (Contd.)
  54. 54 Lecture 53 : Concept of Staggered Grid
  55. 55 Lecture 54 : SIMPLE Algorithm
  56. 56 Lecture 55 : Salient Features of SIMPLE Algorithm
  57. 57 mod12lec56
  58. 58 mod12lec57
  59. 59 mod12lec58
  60. 60 mod12lec59
  61. 61 mod12lec60

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.