Machine Learning

Machine Learning

Krish Naik via YouTube Direct link

Tutorial 33- Chi Square Test Implementation with Python- Hypothesis Testing- Part 2

45 of 146

45 of 146

Tutorial 33- Chi Square Test Implementation with Python- Hypothesis Testing- Part 2

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Machine Learning

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Complete Road Map To Be Expert In Python- Follow My Way
  2. 2 Complete Roadmap To Follow To Prepare Machine Learning With All Videos And Materials
  3. 3 Tutorial 1- Anaconda Installation and Python Basics
  4. 4 Why Python is the Best Programming Language For Machine Learning?
  5. 5 Tutorial 2 - Python List and Boolean Variables
  6. 6 Tutorial 3- Python Sets, Dictionaries and Tuples
  7. 7 Tutorial 4 - Numpy and Inbuilt Functions Tutorial
  8. 8 Tutorial 5- Pandas, Data Frame and Data Series Part-1
  9. 9 Tutorial 6- Pandas,Reading CSV files With Various Parameters- Part 2
  10. 10 Tutorial 7- Pandas-Reading JSON,Reading HTML, Read PICKLE, Read EXCEL Files- Part 3
  11. 11 Tutorial 8- Matplotlib (Simple Visualization Library)
  12. 12 Tutorial 9- Seaborn Tutorial- Distplot, Joinplot, Pairplot Part 1
  13. 13 Tutorial 10- Seaborn- Countplot(), Violinplot(), Boxplot()- Part2
  14. 14 How To Become Expertise in Exploratory Data Analysis
  15. 15 Tutorial 11-Exploratory Data Analysis(EDA) of Titanic dataset
  16. 16 Tutorial 12- Python Functions, Positional and Keywords Arguments
  17. 17 Tutorial 15- Map Functions using Python
  18. 18 Tutorial 13- Python Lambda Functions
  19. 19 Tutorial 16- Filter Functions In Python
  20. 20 Tutorial 17- Python List Comprehension
  21. 21 Tutorial 18- Python Advanced String Formatting
  22. 22 Tutorial 19- Python Iterables vs Iterators
  23. 23 Tutorial 20- How To Import All Important Python Data Science Libraries Using Pyforest
  24. 24 Tutorial 21- Python OOPS Tutorial- Classes, Variables, Methods and Objects
  25. 25 Advanced Python- Exception Handling Detailed Explanation In Python
  26. 26 Advanced Python Series- Custom Exception Handling In Python
  27. 27 Advance Python Series- Public Private And Protected Access Modifiers
  28. 28 Advance Python Series- Inheritance In Python
  29. 29 Tutorial 22-Univariate, Bivariate and Multivariate Analysis- Part1 (EDA)-Data Science
  30. 30 Tutorial 23-Univariate, Bivariate and Multivariate Analysis- Part2 (EDA)-Data Science
  31. 31 Tutorial 24- Histogram in EDA- Data Science
  32. 32 Tutorial 24-Z Score Statistics Data Science
  33. 33 Tutorial 25- Probability Density function and CDF- EDA-Data Science
  34. 34 Tutorial 26- Linear Regression Indepth Maths Intuition- Data Science
  35. 35 Tutorial 27- Ridge and Lasso Regression Indepth Intuition- Data Science
  36. 36 Tutorial 28- Ridge and Lasso Regression using Python and Sklearn
  37. 37 Multiple Linear Regression using python and sklearn
  38. 38 Tutorial 28-MultiCollinearity In Linear Regression- Part 2
  39. 39 Machine Learning-Bias And Variance In Depth Intuition| Overfitting Underfitting
  40. 40 Tutorial 29-R square and Adjusted R square Clearly Explained| Machine Learning
  41. 41 Tutorial 31- Hypothesis Test, Type 1 Error, Type 2 Error
  42. 42 What Is P Value In Statistics In Simple Language?
  43. 43 Tutorial 32- All About P Value,T test,Chi Square Test, Anova Test and When to Use What?
  44. 44 Tutorial 33- P Value,T test, Correlation Implementation with Python- Hypothesis Testing
  45. 45 Tutorial 33- Chi Square Test Implementation with Python- Hypothesis Testing- Part 2
  46. 46 Tutorial 34- Performance Metrics For Classification Problem In Machine Learning- Part1
  47. 47 Tutorial 35- Logistic Regression Indepth Intuition- Part 1| Data Science
  48. 48 Tutorial 36- Logistic Regression Indepth Intuition- Part 2| Data Science
  49. 49 Tutorial 36- Logistic Regression Mutliclass Classification(OneVsRest)- Part 3| Data Science
  50. 50 Tutorial 37: Entropy In Decision Tree Intuition
  51. 51 Tutorial 38- Decision Tree Information Gain
  52. 52 Tutorial 39- Gini Impurity Intuition In Depth In Decision Tree
  53. 53 Tutorial 40- Decision Tree Split For Numerical Feature
  54. 54 Advance House Price Prediction- Exploratory Data Analysis- Part 1
  55. 55 Advance House Price Prediction- Exploratory Data Analysis- Part 2
  56. 56 Advance House Price Prediction-Feature Engineering Part 1
  57. 57 Advance House Price Prediction-Feature Engineering Part 2
  58. 58 Advance House Price Prediction-Feature Selection
  59. 59 Tutorial 41-Performance Metrics(ROC,AUC Curve) For Classification Problem In Machine Learning Part 2
  60. 60 Performance Metrics On MultiClass Classification Problems
  61. 61 K Nearest Neighbor classification with Intuition and practical solution
  62. 62 K Nearest Neighbour Easily Explained with Implementation
  63. 63 Tutorial 42 - Ensemble: What is Bagging (Bootstrap Aggregation)?
  64. 64 Tutorial 43-Random Forest Classifier and Regressor
  65. 65 Tutorial 45-Handling imbalanced Dataset using python- Part 1
  66. 66 Tutorial 46-Handling imbalanced Dataset using python- Part 2
  67. 67 Hyperparameter Optimization for Xgboost
  68. 68 What is AdaBoost (BOOSTING TECHNIQUES)
  69. 69 Visibility Climate Prediction- You Can Add This In Your Resume
  70. 70 Euclidean Distance and Manhattan Distance
  71. 71 K Means Clustering Intuition
  72. 72 Hierarchical Clustering intuition
  73. 73 DBSCAN Clustering Easily Explained with Implementation
  74. 74 Silhouette (clustering)- Validating Clustering Models- Unsupervised Machine Learning
  75. 75 Curse of Dimensionality Easily explained| Machine Learning
  76. 76 Dimensional Reduction| Principal Component Analysis
  77. 77 Principle Component Analysis (PCA) using sklearn and python
  78. 78 What is Cross Validation and its types?
  79. 79 Tutorial 42-How To Find Optimal Threshold For Binary Classification - Data Science
  80. 80 Tutorial 47- Bayes' Theorem| Conditional Probability- Machine Learning
  81. 81 Tutorial 48- Naive Bayes' Classifier Indepth Intuition- Machine Learning
  82. 82 Tutorial 49- How To Apply Naive Bayes' Classifier On Text Data (NLP)- Machine Learning
  83. 83 Support Vector Machine (SVM) Basic Intuition- Part 1| Machine Learning
  84. 84 Maths Intuition Behind Support Vector Machine Part 2 | Machine Learning Data Science
  85. 85 SVM Kernels In-depth Intuition- Polynomial Kernels Part 3 | Machine Learning Data Science
  86. 86 Gradient Boosting In Depth Intuition- Part 1 Machine Learning
  87. 87 Gradient Boosting Complete Maths Indepth Intuiton Explained| Machine Learning- Part2
  88. 88 Xgboost Classification Indepth Maths Intuition- Machine Learning Algorithms🔥🔥🔥🔥
  89. 89 Xgboost Regression In-Depth Intuition Explained- Machine Learning Algorithms 🔥🔥🔥🔥
  90. 90 Data Science In Medical-Live Tracking Of CO--VID Cases In India using Python
  91. 91 Perform EDA In Seconds With Visualization Using SweetViz Library
  92. 92 4 End To End Projects Till Deployment For Beginners In Data Science| All You Have To Do Is Learn
  93. 93 Deploy Machine Learning Models Using StreamLit Library- Data Science
  94. 94 Perform Exploratory Data Analysis In Minutes- Data Science| Machine Learning
  95. 95 Pandas Visual Analysis- Perform Exploratory Data Analysis In A Single Line Of Code🔥🔥🔥🔥
  96. 96 How To Read And Process Huge Datasets in Seconds Using Vaex Library| Data Science| Machine Learning
  97. 97 D-Tale The Best Library To Perform Exploratory Data Analysis Using Single Line Of Code🔥🔥🔥🔥
  98. 98 Interview Prep Day3-How To Prepare Support Vector Machines Important Questions In Interviews🔥🔥
  99. 99 Google Datasets Search Engine- Search All Datasets From One Place For Data Science,Machine Learning
  100. 100 How To Run Flask In Google Colab
  101. 101 Time Series Forecasting Using Facebook FbProphet
  102. 102 Performance Metrics Interview Questions- Data Science
  103. 103 How To Perform Post Pruning In Decision Tree? Prevent Overfitting- Data Science
  104. 104 How To Train Machine Learning Model Using CPU Multi Cores
  105. 105 Step By Step Process To Learn Machine Learning Algorithm Efficiently
  106. 106 Data Science Is Just Not About Model Building
  107. 107 How To Interpret The ML Model? Is Your Model Black Box? Lime Library
  108. 108 6 Healthcare End To End Machine Learning Projects- Credits Devansh and Bedanta
  109. 109 Overfitting, Underfitting And Data Leakage Explanation With Simple Example
  110. 110 What Is API? Application Programming Interface And Why It Is Important-Data Science
  111. 111 500+ Machine Learning And Deep Learning Projects All At One Place
  112. 112 Google Colab Pro Vs Colab Free- Benefits Of Using Colab Pro- How To Access From India
  113. 113 Advance Python Series-Magic Methods In Classes
  114. 114 Advanced Python Series- Assert Statement In Python
  115. 115 How To Speed Up Pandas By 4X Times- Modin Pandas Library
  116. 116 TextBlob Library In Python For Natural Language Processing
  117. 117 3000+ Research Datasets For Machine Learning Researchers By Papers With Code
  118. 118 Introduction To MLflow-An Open Source Platform for the Machine Learning Lifecycle
  119. 119 Amazing Data Science End To End Project From Starters In ML and Deep Learning- Agriculture Domain
  120. 120 SVM Kernal- Polynomial And RBF Implementation Using Sklearn- Machine Learning
  121. 121 Lux - Python Library for Intelligent Visual Discovery
  122. 122 Texthero-Text Preprocessing, Representation And Visualization From Zero to Hero.
  123. 123 Colab Pro Now Available In India, Brazil, France, Thailand,Japan,UK- BOON FOR Data Science Aspirants
  124. 124 Rainfall Prediction- Converting A Kaggle Project to End To End Machine Learning Project
  125. 125 PyWebIO- Creating WebAPP Using Python Without Using HTML And JS
  126. 126 Creating BMI Calculator Web APP Using Python And PyWebIO
  127. 127 Deployment Of ML Models Using PyWebIO And Flask
  128. 128 Shapash- Python Library To Make Machine Learning Interpretable
  129. 129 Difference Between fit(), transform(), fit_transform() and predict() methods in Scikit-Learn
  130. 130 EvalML AutoML Library To Automate Feature Engineering, Feature Selection,Model Creation And Tuning
  131. 131 Lazy Predict Python- Understanding Which Models Works Well Without Any Tuning
  132. 132 How To Automate NLP Tasks Using EvalML Library
  133. 133 Gradio Library-Interfaces for your Machine Learning Models
  134. 134 Comparing Transfer Learning Models Using Gradio
  135. 135 Introduction To Machine Learning And Deep Learning For Starters
  136. 136 Numba Library- Let's Make Python Faster
  137. 137 Deployment Of ML Models Using PyWebIO And Flask In Heroku
  138. 138 All Automated EDA Libraries All At One Place
  139. 139 Discussing All The Types Of Feature Transformation In Machine Learning
  140. 140 Automating Web Scrapping Using AutoScraper Library
  141. 141 Automating WebScraping Amazon Ecommerce Website Using AutoScrapper
  142. 142 AutoScraper and Flask: Create an API From Amazon Website in Less Than 10 Minutes
  143. 143 Autoviz-Automatically Visualize Any Dataset With Single Line Of Code
  144. 144 AutoScraper- Scrap Images From Amazon Ecommerce- End To End Web Scraping Application
  145. 145 All Type Of Cross Validation With Python All In 1 Video
  146. 146 DataPrep Library- Perform Faster EDA Within No Time

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.