Completed
Calculus II - 10.2.2 Finding Parametric Equations
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Calculus II
Automatically move to the next video in the Classroom when playback concludes
- 1 Calculus II - 6.1.1 General and Particular Solutions to Differential Equations
- 2 Calculus II - 6.1.2 Slope Fields
- 3 Calculus II - 6.2.1 Use Separation of Variables to Solve a Simple Differential Equation
- 4 Calculus II - 6.2.2 Models of Exponential Growth and Decay
- 5 Calculus II - 6.3.1 Using Separation of Variables to Find General and Particular Solutions
- 6 Calculus II - 6.3.2 The Logistic Differential Equation
- 7 Calculus II - 6.4.1 First Order Linear Differential Equations
- 8 Calculus II - 7.1.1 Finding The Area Under a Curve
- 9 Calculus II - 7.1.2 Finding the Area Between Two Curves
- 10 Calculus II - 7.1.3 Applications Involving the Area Between Two Curves
- 11 Calculus II - 7.2.1 Finding Volume Using the Disk Method
- 12 Calculus II - 7.2.2 Finding Volume Using the Washer Method
- 13 Calculus II - 7.2.3 Finding the Volume of a Solid with Known Cross Sections
- 14 Calculus II - 7.3.1 Finding Volume Using the Shell Method
- 15 Calculus II - 7.3.2 Disk Method vs. Shell Method
- 16 Calculus II - 7.4.1 Finding Arc Length
- 17 Calculus II - 7.4.2 Surfaces of Revolution
- 18 Calculus II - 7.5.1 Work, Work, Work
- 19 Calculus II - 7.6.1 Center of Mass in a One- or Two-Dimensional System
- 20 Calculus II - 7.6.2 Center of Mass of a Planar Lamina
- 21 Calculus II - 7.7.1 Fluid Pressure and Fluid Force
- 22 Calculus II - 8.1.1 Fitting Integrands to Basic Integration Rules
- 23 Calculus II - 8.2.1 Integration by Parts
- 24 Calculus II - 8.3.1 Integrals Involving Powers of Sine and Cosine
- 25 Calculus II - 8.3.2 Integrals Involving Powers of Secant and Tangent
- 26 Calculus II - 8.4.1 Trigonometric Substitution
- 27 Calculus II - 8.5.1 Using Partial Fractions with Linear Factors to Integrate
- 28 Calculus II - 8.5.2 Using Partial Fractions with Quadratic Factors to Integrate
- 29 Calculus II - 8.6.1 Using the Trapezoidal Rule to Approximate Integrals
- 30 Calculus II - 8.6.2 Using Simpson's Rule to Approximate Integrals
- 31 Calculus II - 8.8.1 Improper Integrals with Infinite Limits of Integration
- 32 Calculus II - 8.8.2 Improper Integrals with Infinite Discontinuities
- 33 Calculus II - 9.1.1 The Limit of a Sequence
- 34 Calculus II - 9.1.2 Pattern Recognition for Sequences
- 35 Calculus II - 9.1.3 Monotonic and Bounded Sequences
- 36 Calculus II - 9.2.1 Infinite Series
- 37 Calculus II - 9.2.2 The Geometric Series
- 38 Calculus II - 9.2.3 The nth Term Test for Divergence
- 39 Calculus II - 9.3.1 The Integral Test
- 40 Calculus II - 9.3.2 The p-Series
- 41 Calculus II - 9.4.1 The Direct Comparison Test
- 42 Calculus II - 9.4.2 The Limit Comparison Test
- 43 Calculus II - 9.5.1 The Alternating Series Test
- 44 Calculus II - 9.5.2 The Alternating Series Remainder
- 45 Calculus II - 9.5.3 Absolute and Conditional Convergence
- 46 Calculus II - 9.6.1 The Ratio Test
- 47 Calculus II - 9.6.2 The Root Test
- 48 Calculus II - 9.8.1 The Power Series L=0 or L=Inf
- 49 Calculus II - 9.8.2 The Power Series - Finding R and the Interval of Convergence
- 50 Calculus II - 9.9.1 Represent Functions with the Geometric Power Series
- 51 Calculus II - 9.9.2 Operations with The Geometric Power Series
- 52 Calculus II - 9.10.1 The Taylor and Maclaurin Series
- 53 Calculus II - 9.10.2 The Binomial Series
- 54 Calculus II - 9.10.3 Use The Power Series for Elementary Functions
- 55 Calculus II - 10.1.1 An Introduction to Conic Sections
- 56 Calculus II - 10.1.2 Parabolas
- 57 Calculus II - 10.1.3 Ellipses
- 58 Calculus II - 10.1.4 Hyperbolas
- 59 Calculus II - 10.2.1 Plane Curves and Parametric Equations
- 60 Calculus II - 10.2.2 Finding Parametric Equations
- 61 Calculus II - 10.3.1 Slope, Tangent Lines, and Concavity of Parametric Equations
- 62 Calculus II - 10.4.1 Polar Coordinates and Coordinate Conversion
- 63 Calculus II - 10.4.2 Polar Graphs
- 64 Calculus II - 10.4.3 Slope and Tangent Lines of Polar Equations