Calculus I - Entire Course

Calculus I - Entire Course

Kimberly Brehm via YouTube Direct link

Calculus 5.4.1 The Natural Exponential Function

75 of 86

75 of 86

Calculus 5.4.1 The Natural Exponential Function

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Calculus I - Entire Course

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Calculus 1.1 A Preview of Calculus
  2. 2 Calculus 1.2.1 Find Limits Graphically and Numerically: Estimate a Limit Numerically or Graphically
  3. 3 Calculus 1.2.2 Find Limits Graphically and Numerically: When Limits Fail to Exist
  4. 4 Calculus 1.2.3 Find Limits Graphically and Numerically: The Formal Definition of A Limit
  5. 5 Calculus 1.3.1 Evaluating Limits Using Properties of Limits
  6. 6 Calculus 1.3.2 Evaluating Limits By Dividing Out or Rationalizing
  7. 7 Calculus 1.3.3 Evaluating Limits Using the Squeeze Theorem
  8. 8 Calculus 1.4.1 Continuity on Open Intervals
  9. 9 Calculus 1.4.2 Continuity on Closed Intervals
  10. 10 Calculus 1.4.3 Properties of Continuity
  11. 11 Calculus 1.4.4 The Intermediate Value Theorem
  12. 12 Calculus 1.5.1 Determine Infinite Limits
  13. 13 Calculus 1.5.2 Determine Vertical Asymptotes
  14. 14 Calculus 2.1.1 Find the Slope of a Tangent Line
  15. 15 Calculus 2.1.2 Derivatives Using the Limit Definition
  16. 16 Calculus 2.1.3 Differentiability and Continuity
  17. 17 Calculus 2.2.1 Basic Differentiation Rules
  18. 18 Calculus 2.2.2 Rates of Change
  19. 19 Calculus 2.3.1 The Product and Quotient Rules
  20. 20 Calculus 2.3.2 Derivatives of Trigonometric Functions
  21. 21 Calculus 2.3.3 Higher Order Derivatives
  22. 22 Calculus 2.4.1 The Chain Rule
  23. 23 Calculus 2.4.2 The General Power Rule
  24. 24 Calculus 2.4.3 Simplifying Derivatives
  25. 25 Calculus 2.4.4 Trigonometric Functions and the Chain Rule
  26. 26 Calculus 2.5.1 Implicit and Explicit Functions
  27. 27 Calculus 2.5.2 Implicit Differentiation
  28. 28 Calculus I - 2.6.1 Related Rates - Water Ripples (2D Circle)
  29. 29 Calculus I - 2.6.2 Related Rates - Balloon Inflation (Sphere)
  30. 30 Calculus I - 2.6.3 Related Rates - Modeling with Triangles
  31. 31 Calculus 3.1.1 Extrema of a Function on an Interval
  32. 32 Calculus 3.1.2 Relative Extrema of a Function on an Open Interval
  33. 33 Calculus 3.1.3 Find Extrema on a Closed Interval
  34. 34 Calculus 3.2.1 Rolle’s Theorem
  35. 35 Calculus 3.2.2 The Mean Value Theorem
  36. 36 Calculus 3.3.1 Increasing and Decreasing Intervals
  37. 37 Calculus 3.3.2 The First Derivative Test
  38. 38 Calculus 3.4.1 Intervals of Concavity
  39. 39 Calculus 3.4.2 Points of Inflection
  40. 40 Calculus 3.4.3 The Second Derivative Test
  41. 41 Calculus 3.4.4 Putting It All Together
  42. 42 Calculus 3.5.1 Determine Finite Limits at Infinity
  43. 43 Calculus 3.5.2 Determine Horizontal Asymptotes of a Function
  44. 44 Calculus 3.5.3 Horizontal Asymptotes - Tricky Examples
  45. 45 Calculus 3.5.4 Determine Infinite Limits at Infinity
  46. 46 Calculus 3.6.1 A Summary of Curve Sketching
  47. 47 Calculus 3.6.2 Curve Sketching - Full Practice
  48. 48 Calculus 3.7.1 Optimization Problems
  49. 49 Calculus 3.7.2 Optimization Practice
  50. 50 Calculus 4.1.1 Antiderivatives
  51. 51 Calculus 4.1.2 Basic Integration Rules
  52. 52 Calculus 4.1.3 Find Particular Solutions to Differential Equations
  53. 53 Calculus 4.2.1 Sigma Notation
  54. 54 Calculus 4.2.2 The Concept of Area
  55. 55 Calculus 4.2.3 The Approximate Area of a Plane Region
  56. 56 Calculus 4.2.4 Finding Area By The Limit Definition
  57. 57 Calculus 4.3.1 Riemann Sums
  58. 58 Calculus 4.3.2 Definite Integrals
  59. 59 Calculus 4.3.3 Properties of Definite Integrals
  60. 60 Calculus 4.4.1 The Fundamental Theorem of Calculus
  61. 61 Calculus 4.4.2 The Mean Value Theorem for Integrals
  62. 62 Calculus 4.4.3 The Average Value of a Function
  63. 63 Calculus 4.4.4 The Second Fundamental Theorem of Calculus
  64. 64 Calculus 4.5.1 Use Pattern Recognition in Indefinite Integrals
  65. 65 Calculus 4.5.2 Change of Variables for Indefinite Integrals
  66. 66 Calculus 5.1.1 Properties of the Natural Logarithmic Function
  67. 67 Calculus 5.1.2 The Number e
  68. 68 Calculus 5.1.3 The Derivative of the Natural Logarithmic Function
  69. 69 Calculus 5.2.1 The Log Rule for Integration
  70. 70 Calculus 5.2.2 Integrals of Trigonometric Functions
  71. 71 Calculus 5.3.1 Verify Functions are Inverses of One Another
  72. 72 Calculus 5.3.2 Determine Whether a Function Has An Inverse
  73. 73 Calculus 5.3.3 Find the Inverse of a Function
  74. 74 Calculus 5.3.4 Find the Derivative of an Inverse of a Function
  75. 75 Calculus 5.4.1 The Natural Exponential Function
  76. 76 Calculus 5.4.2 Derivatives of the Natural Exponential Function
  77. 77 Calculus 5.4.3 Integrals of the Natural Exponential Function
  78. 78 Calculus 5.5.1 Exponential Functions with Bases Other than e
  79. 79 Calculus 5.5.2 Differentiate and Integrate with Bases Other than e
  80. 80 Calculus 5.5.3 Applications of Bases Other than e
  81. 81 Calculus 5.6.1 Indeterminate Forms
  82. 82 Calculus 5.6.2 L’Hôpital’s Rule
  83. 83 Calculus 5.7.1 Inverse Trigonometric Functions
  84. 84 Calculus 5.7.2 Derivatives of Inverse Trigonometric Functions
  85. 85 Calculus 5.8.1 Integrate Inverse Trigonometric Functions
  86. 86 Calculus 5.8.2 Integrate Using the Completing the Square Technique

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.