Optimizing LLM Fine-Tuning with PEFT and LoRA Adapter-Tuning for GPU Performance

Optimizing LLM Fine-Tuning with PEFT and LoRA Adapter-Tuning for GPU Performance

Discover AI via YouTube Direct link

Run inference of new PEFT - LoRA adapter - tuned LLM

14 of 15

14 of 15

Run inference of new PEFT - LoRA adapter - tuned LLM

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Optimizing LLM Fine-Tuning with PEFT and LoRA Adapter-Tuning for GPU Performance

Automatically move to the next video in the Classroom when playback concludes

  1. 1 PEFT source code LoRA, pre-fix tuning,..
  2. 2 Llama - LoRA fine-tuning code
  3. 3 Create PEFT - LoRA Model Seq2Seq
  4. 4 Trainable parameters of PEFT - LoRA model
  5. 5 get_peft_model
  6. 6 PEFT - LoRA - 8bit model of OPT 6.7B LLM
  7. 7 load_in_8bit
  8. 8 INT8 Quantization explained
  9. 9 Fine-tune a quantized model
  10. 10 bfloat16 and XLA compiler PyTorch 2.0
  11. 11 Freeze all pre-trained layer weight tensors
  12. 12 Adapter-tuning of PEFT - LoRA model
  13. 13 Save tuned PEFT - LoRA Adapter weights
  14. 14 Run inference of new PEFT - LoRA adapter - tuned LLM
  15. 15 Load your Adapter-tuned PEFT - LoRA model

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.