Applied Optimization for Wireless, Machine Learning, Big Data

Applied Optimization for Wireless, Machine Learning, Big Data

IIT Kanpur July 2018 via YouTube Direct link

noc18-ee31 lec 71-Examples:/1 minimization with /x norm constraints , Network Flow problem

72 of 80

72 of 80

noc18-ee31 lec 71-Examples:/1 minimization with /x norm constraints , Network Flow problem

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Applied Optimization for Wireless, Machine Learning, Big Data

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction - Applied Optimization for Wireless- Prof Aditya Jagannatham
  2. 2 Lec 01 | Applied Optimization | Properties of Vectors and Matrices | IIT Kanpur
  3. 3 Lec 02 | Applied Optimization | Eigenvectors and Eigenvalues | IIT Kanpur
  4. 4 Lec 03 | Applied Optimization | Positive Semidefinite (PSD) Matrices | IIT Kanpur
  5. 5 Lec 04 | Applied Optimization | Inner Product Space and its Properties-I | IIT Kanpur
  6. 6 Lec 05 | Applied Optimization | Inner Product Space and its Properties -II | IIT Kanpur
  7. 7 Lec 06 | Applied Optimization | Properties of Norm, Echelon form of a Matrix | IIT Kanpur
  8. 8 Lec 07 | Applied Optimization | Gram Schmidt Orthogonalization | IIT Kanpur
  9. 9 Lec 08 | Applied Optimization | Null Space, Trace of a Matrix | IIT Kanpur
  10. 10 Lec 09 | Applied Optimization | Eigenvalue Decomposition (EVD) | IIT Kanpur
  11. 11 Lec 10 | Applied Optimization | Matrix Inversion Lemma(Woodbury identity) | IIT Kanpur
  12. 12 Lec 11 | Applied Optimization | Convex Sets and its Properties | IIT Kanpur
  13. 13 Lec 12 | Applied Optimization | Examples of Affine set | IIT Kanpur
  14. 14 Lec 13 | Applied Optimization | Norm Ball and its Application | IIT Kanpur
  15. 15 Lec 14 | Applied Optimization | Ellipsoid and its Application | IIT Kanpur
  16. 16 Lec 15 | Applied Optimization | Norm Cone, Polyhedron and its Application | IIT Kanpur
  17. 17 Lec 16 | Applied Optimization | Cooperative Cellular Transmission | IIT Kanpur
  18. 18 Lec 17 | Applied Optimization | Positive semidefinite (PSD) Cone | IIT Kanpur
  19. 19 Lec 18 | Applied Optimization | Affine functions and , l2 , lp , l1 norm balls | IIT Kanpur
  20. 20 Lec 19 | Applied Optimization | l∞, l0 norm balls and Matrix propertie | IIT Kanpur
  21. 21 Lec 20 | Applied Optimization | Example problems - I | IIT Kanpur
  22. 22 Lec 21 | Applied Optimization | Example problems - II | IIT Kanpur
  23. 23 Lec 22 | Applied Optimization | Example problems - III | IIT Kanpur
  24. 24 Lec 23 | Applied Optimization | Convex and Concave Functions | IIT Kanpur
  25. 25 Lec 24 | Applied Optimization | Convex Functions: Properties and examples | IIT Kanpur
  26. 26 Lec 25 | Applied Optimization | Test for Convexity | IIT Kanpur
  27. 27 Lec 26 | Applied Optimization | MIMO Receiver Design (LS problem) | IIT Kanpur
  28. 28 Lec 27 | Applied Optimization | Jensen's Inequality and its Application-I | IIT Kanpur
  29. 29 Lec 28 | Applied Optimization | Jensen's Inequality and its Application-II | IIT Kanpur
  30. 30 Lec 29 | Applied Optimization | Operations that preserve Convexity | IIT Kanpur
  31. 31 Lec 30 | Applied Optimization | Conjugate Function , Test for Convexity:Examples | IIT Kanpur
  32. 32 Lec 31 | Applied Optimization | Operations preserving Convexity: Examples | IIT Kanpur
  33. 33 Lec 32 | Applied Optimization | Test for Convexity, Quasi-Convexity: Examples | IIT Kanpur
  34. 34 Lec 33 | Applied Optimization | Examples on Convex functions| IIT Kanpur
  35. 35 Lec 34 | Applied Optimization | Beamforming in Multi-antenna Wireless Communication | IIT Kanpur
  36. 36 Lec 35 | Applied Optimization | Maximal Ratio Combiner for Wireless Systems | IIT Kanpur
  37. 37 Lec 36 | Applied Optimization | Multi-antenna Beamforming with Interfering User | IIT Kanpur
  38. 38 Lec 37 | Applied Optimization | Zero-Forcing (ZF) Beamforming with Interfering User | IIT Kanpur
  39. 39 noc18-ee31-Lecture 38-Practical Application
  40. 40 noc18-ee31-Lecture 39-Practical Application
  41. 41 noc18-ee31-Lecture 40- Practical Application
  42. 42 noc18-ee31-Lec 41 | Applied Optimization | Least Squares problem | IIT Kanpur
  43. 43 noc18-ee31-Lec 42 | Applied Optimization | Geometric Intuition forLeast Squares | IIT Kanpur
  44. 44 noc18-ee31-Lec 43 | Applied Optimization | Multi Antenna Channel Estimation | IIT Kanpur
  45. 45 noc18-ee31-Lec 44 | Applied Optimization | Image Deblurring | IIT Kanpur
  46. 46 noc18-ee31-Lec 45 | Applied Optimization | Least Norm Signal Estimation | IIT Kanpur
  47. 47 noc18-ee31-Lec 46 | Applied Optimization | Regularization | IIT Kanpur
  48. 48 noc18-ee31-Lec 47 | Applied Optimization | Convex Optimization Problem: Representations | IIT Kanpur
  49. 49 noc18-ee31-Lec 49 - Applied Optimization | Stochastic Linear Program, Gaussian Uncertainty
  50. 50 noc18-ee31-Lec 48 | Applied Optimization | Linear Program and its Application | IIT Kanpur
  51. 51 noc18-ee31-Lec 50 -Applied Optimization | Multiple Input Multiple Output(MIMO) Beamforming -I
  52. 52 noc18-ee31-Lec 51- Applied Optimization | Multiple Input Multiple Output(MIMO) Beamforming -II
  53. 53 noc18-ee31-Lec 52 -Applied Optimization | Co-operative Communication -I
  54. 54 noc18-ee31-Lec 53 -Applied Optimization | Co-operative Communication -II
  55. 55 noc18-ee31-Lec 54 -Applied Optimization | Co-operative Communication -III
  56. 56 noc18-ee31-Lec 55 -Applied Optimization | Compressive Sensing -I
  57. 57 noc18-ee31-Lec 56 | Applied Optimization | Compressive Sensing -II
  58. 58 noc18-ee31-Lec 57 | Applied Optimization | Orthogonal Matching Pursuit (OMP) algorithm
  59. 59 noc18-ee31-Lec 58 | Applied Optimization | Example problem on OMP algorithm
  60. 60 noc18-ee31-Lec 59 | Applied Optimization | Compressive Sensing via L1 norm minimization
  61. 61 noc18-ee31-Lec 60 | Applied Optimization | Linear Classification Problem-I
  62. 62 noc18-ee31-Lec 61 | Applied Optimization | Linear Classification Problem-II
  63. 63 noc18-ee31 Lecture 62-Practical Application: Approximate Classifier Design
  64. 64 noc18-ee31 Lecture 63-Concept of Duality
  65. 65 noc18-ee31 Lecture 64-Relation between optimal value of Primal & Dual Problems
  66. 66 noc18-ee31 Lecture 65-Example problem on Strong Duality
  67. 67 noc18-ee31 Lecture 66-Karush-Kuhn-Tucker(KKT) condition
  68. 68 noc18-ee31 Lecture 67-Application of KKT condition:Optimal MIMO power allocation(Waterfilling)
  69. 69 noc18-ee31 lec 68-Optimal MIMO Power allocation(Waterfilling)-II
  70. 70 noc18-ee31 lec 69-Example problem on Optimal MIMO Power allocation(Waterfilling))
  71. 71 noc18-ee31 lec 70-Examples : Linear objective with box constraints, Linear Programming
  72. 72 noc18-ee31 lec 71-Examples:/1 minimization with /x norm constraints , Network Flow problem
  73. 73 noc18-ee31 lec 72-Examples on Quadratic Optimization
  74. 74 noc18-ee31 lec 73-Examples on Duality: Dual Norm, Dual of Linear Program(LP)
  75. 75 noc18-ee31 Lecture 74-Examples on Duality: Min-Max problem, Analytic Centering
  76. 76 noc18-ee31 Lecture 75-semi Definite Program(SDP) and its application:MIMO symbol vector decoding
  77. 77 noc18-ee31 Lecture 76-Application:SDP for MIMO Maximum Likelihood(ML) Detection
  78. 78 noc18-ee31 Lecture 77-Introduction to big Data: Online Recommender System(Netflix)
  79. 79 noc18-ee31 Lecture 78-matrix Completion Problem in Big Data: Netflix-I
  80. 80 noc18-ee31 Lecture 79-Matrix Completion Problem in Big Data: Netflix-II

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.