An Introduction to Artificial Intelligence

An Introduction to Artificial Intelligence

IIT Delhi July 2018 via YouTube Direct link

Informed Search: Analysis of A* Algorithm Part-3

18 of 98

18 of 98

Informed Search: Analysis of A* Algorithm Part-3

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

An Introduction to Artificial Intelligence

Automatically move to the next video in the Classroom when playback concludes

  1. 1 intro
  2. 2 Introduction: What to Expect from AI
  3. 3 Introduction: History of AI from 40s - 90s
  4. 4 Introduction: History of AI in the 90s
  5. 5 Introduction: History of AI in NASA & DARPA(2000s)
  6. 6 Introduction: The Present State of AI
  7. 7 Introduction: Definition of AI Dictionary Meaning
  8. 8 Introduction: Definition of AI Thinking VS Acting and Humanly VS Rationally
  9. 9 Introduction: Definition of AI Rational Agent View of AI
  10. 10 Introduction: Examples Tasks, Phases of AI & Course Plan
  11. 11 Uniform Search: Notion of a State
  12. 12 Uniformed Search: Search Problem and Examples Part-2
  13. 13 Uniformed Search: Basic Search Strategies Part-3
  14. 14 Uniformed Search: Iterative Deepening DFS Part-4
  15. 15 Uniformed Search: Bidirectional Search Part-5
  16. 16 Informed Search: Best First Search Part-1
  17. 17 Informed Search: Greedy Best First Search and A* Search Part-2
  18. 18 Informed Search: Analysis of A* Algorithm Part-3
  19. 19 Informed Search Proof of optimality of A* Part-4
  20. 20 Informed Search: Iterative Deepening A* and Depth First Branch & Bound Part-5
  21. 21 Informed Search: Admissible Heuristics and Domain Relaxation Part-6
  22. 22 Informed Search: Pattern Database Heuristics Part-7
  23. 23 Local Search: Satisfaction Vs Optimization Part-1
  24. 24 Local Search: The Example of N-Queens Part-2
  25. 25 Local Search: Hill Climbing Part-3
  26. 26 Local Search: Drawbacks of Hill Climbing Part-4
  27. 27 Local Search: of Hill Climbing With random Walk & Random Restart Part-5
  28. 28 Local Search: Hill Climbing With Simulated Anealing Part-6
  29. 29 Local Search: Local Beam Search and Genetic Algorithms Part-7
  30. 30 Adversarial Search : Minimax Algorithm for two player games
  31. 31 Adversarial Search : An Example of Minimax Search
  32. 32 Adversarial Search : Alpha Beta Pruning
  33. 33 Adversarial Search : Analysis of Alpha Beta Pruning
  34. 34 Adversarial Search : Analysis of Alpha Beta Pruning (contd...)
  35. 35 Adversarial Search : Horizon Effect, Game Databases & Other Ideas
  36. 36 Adversarial Search: Summary and Other Games
  37. 37 Constraint Satisfaction Problems: Representation of the atomic state
  38. 38 Constraint Satisfaction Problems: Map coloring and other examples of CSP
  39. 39 Constraint Satisfaction Problems: Backtracking Search
  40. 40 Constraint Satisfaction Problems: Variable and Value Ordering in Backtracking Search
  41. 41 Constraint Satisfaction Problems: Inference for detecting failures early
  42. 42 Constraint Satisfaction Problems: Exploiting problem structure
  43. 43 Logic in AI : Different Knowledge Representation systems - Part 1
  44. 44 Logic in AI : Syntax - Part - 2
  45. 45 Logic in AI : Semantics - Part - 3
  46. 46 Logic in AI : Forward Chaining - Part 4
  47. 47 Logic in AI : Resolution - Part - 5
  48. 48 Logic in AI : Reduction to Satisfiability Problems - Part - 6
  49. 49 Logic in AI : SAT Solvers : DPLL Algorithm - Part - 7
  50. 50 Logic in AI : Sat Solvers: WalkSAT Algorithm - Part - 8
  51. 51 Uncertainty in AI: Motivation
  52. 52 Uncertainty in AI: Basics of Probability
  53. 53 Uncertainty in AI: Conditional Independence & Bayes Rule
  54. 54 Bayesian Networks: Syntax
  55. 55 Bayesian Networks: Factoriziation
  56. 56 Bayesian Networks: Conditional Independences and d-Separation
  57. 57 Bayesian Networks: Inference using Variable Elimination
  58. 58 Bayesian Networks: Reducing 3-SAT to Bayes Net
  59. 59 Bayesian Networks: Rejection Sampling
  60. 60 Bayesian Networks: Likelihood Weighting
  61. 61 Bayesian Networks: MCMC with Gibbs Sampling
  62. 62 Bayesian Networks: Maximum Likelihood Learning"
  63. 63 Bayesian Networks: Maximum a-Posteriori LearningÂ
  64. 64 Bayesian Networks: Bayesian Learning
  65. 65 Bayesian Networks: Structure Learning and Expectation Maximization
  66. 66 Introduction, Part 10: Agents and Environments
  67. 67 mod10lec66
  68. 68 mod10lec67
  69. 69 mod10lec68
  70. 70 mod10lec69
  71. 71 mod10lec68
  72. 72 mod10lec70
  73. 73 mod10lec71
  74. 74 mod10lec72
  75. 75 mod10lec73
  76. 76 mod10lec74
  77. 77 mod10lec75
  78. 78 mod11lec76
  79. 79 mod11lec77
  80. 80 mod11lec78
  81. 81 mod11lec79
  82. 82 mod11lec80
  83. 83 mod11lec81
  84. 84 mod11lec82
  85. 85 mod11lec83
  86. 86 mod12lec84
  87. 87 mod12lec85
  88. 88 mod12lec86
  89. 89 mod12lec87
  90. 90 mod12lec88
  91. 91 mod12lec89
  92. 92 mod12lec90
  93. 93 mod12lec91
  94. 94 mod12lec92
  95. 95 mod12lec93
  96. 96 mod12lec94
  97. 97 mod12lec95
  98. 98 mod12lec96

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.