Visual-Textual Video Synopsis Generation - Techniques and Applications

Visual-Textual Video Synopsis Generation - Techniques and Applications

UCF CRCV via YouTube Direct link

Limitations

12 of 49

12 of 49

Limitations

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Visual-Textual Video Synopsis Generation - Techniques and Applications

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Intro
  2. 2 Motivation
  3. 3 Video Summarization: Categories
  4. 4 Application: Movie Trailer
  5. 5 Application: Security
  6. 6 Application: Personalization
  7. 7 Challenges
  8. 8 Tackling subjectivity
  9. 9 Video Summarization as Subset Selection
  10. 10 Determinantal Point Process
  11. 11 DPP for Video Summarization
  12. 12 Limitations
  13. 13 Sequential DPP
  14. 14 Sequential-Hierarchical DPP
  15. 15 Summarize the story
  16. 16 Experimental Setup
  17. 17 List of concepts
  18. 18 Evaluation Scenarios
  19. 19 Shortcomings
  20. 20 Constructing Dataset
  21. 21 Collecting Annotations
  22. 22 Dense Concept Tagging
  23. 23 Comparing summaries
  24. 24 User Summaries
  25. 25 Memory Network Encoding
  26. 26 Qualitative Results - Drink - Food
  27. 27 Summary Compiled the first query-focused video summarization dataset
  28. 28 Length of Summary
  29. 29 Length of the Summary
  30. 30 Sequential GDPP (SeqGDPP)
  31. 31 Train and Test Discrepancy
  32. 32 Large-Margin Objective Function
  33. 33 Updated Evaluation Metric
  34. 34 Generic Summarization Results
  35. 35 Query-Focused Summarization Results
  36. 36 Naïve Approach
  37. 37 Issues
  38. 38 Alternative Approach
  39. 39 Advantages
  40. 40 Framework
  41. 41 Caption Generation Network
  42. 42 Visual-Language Content Matching Network
  43. 43 Purport Network
  44. 44 Experiments
  45. 45 Analysis
  46. 46 Ablation Study
  47. 47 Quantitative Results - Visual Domain
  48. 48 Summary ... Chapter 3
  49. 49 Future Work

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.