Deep Learning for Computer Vision with TensorFlow – Complete Course

Deep Learning for Computer Vision with TensorFlow – Complete Course

freeCodeCamp.org via freeCodeCamp Direct link

⌨️ How and Why ConvNets Work

26 of 98

26 of 98

⌨️ How and Why ConvNets Work

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Deep Learning for Computer Vision with TensorFlow – Complete Course

Automatically move to the next video in the Classroom when playback concludes

  1. 1 ⌨️ Welcome
  2. 2 ⌨️ Prerequisite
  3. 3 ⌨️ What we shall Learn
  4. 4 ⌨️ Basics
  5. 5 ⌨️ Initialization and Casting
  6. 6 ⌨️ Indexing
  7. 7 ⌨️ Maths Operations
  8. 8 ⌨️ Linear Algebra Operations
  9. 9 ⌨️ Common TensorFlow Functions
  10. 10 ⌨️ Ragged Tensors
  11. 11 ⌨️ Sparse Tensors
  12. 12 ⌨️ String Tensors
  13. 13 ⌨️ Variables
  14. 14 ⌨️ Task Understanding
  15. 15 ⌨️ Data Preparation
  16. 16 ⌨️ Linear Regression Model
  17. 17 ⌨️ Error Sanctioning
  18. 18 ⌨️ Training and Optimization
  19. 19 ⌨️ Performance Measurement
  20. 20 ⌨️ Validation and Testing
  21. 21 ⌨️ Corrective Measures
  22. 22 ⌨️ Task Understanding
  23. 23 ⌨️ Data Preparation
  24. 24 ⌨️ Data Visualization
  25. 25 ⌨️ Data Processing
  26. 26 ⌨️ How and Why ConvNets Work
  27. 27 ⌨️ Building Convnets with TensorFlow
  28. 28 ⌨️ Binary Crossentropy Loss
  29. 29 ⌨️ Training Convnets
  30. 30 ⌨️ Model Evaluation and Testing
  31. 31 ⌨️ Loading and Saving Models to Google Drive
  32. 32 ⌨️ Functional API
  33. 33 ⌨️ Model Subclassing
  34. 34 ⌨️ Custom Layers
  35. 35 ⌨️ Precision, Recall and Accuracy
  36. 36 ⌨️ Confusion Matrix
  37. 37 ⌨️ ROC Plots
  38. 38 ⌨️ TensorFlow Callbacks
  39. 39 ⌨️ Learning Rate Scheduling
  40. 40 ⌨️ Model Checkpointing
  41. 41 ⌨️ Mitigating Overfitting and Underfitting
  42. 42 ⌨️ Augmentation with tf.image and Keras Layers
  43. 43 ⌨️ Mixup Augmentation
  44. 44 ⌨️ Cutmix Augmentation
  45. 45 ⌨️ Data Augmentation with Albumentations
  46. 46 ⌨️ Custom Loss and Metrics
  47. 47 ⌨️ Eager and Graph Modes
  48. 48 ⌨️ Custom Training Loops
  49. 49 ⌨️ Data Logging
  50. 50 ⌨️ View Model Graphs
  51. 51 ⌨️ Hyperparameter Tuning
  52. 52 ⌨️ Profiling and Visualizations
  53. 53 ⌨️ Experiment Tracking
  54. 54 ⌨️ Hyperparameter Tuning
  55. 55 ⌨️ Dataset Versioning
  56. 56 ⌨️ Model Versioning
  57. 57 ⌨️ Data Preparation
  58. 58 ⌨️ Modeling and Training
  59. 59 ⌨️ Data Augmentation
  60. 60 ⌨️ TensorFlow Records
  61. 61 ⌨️ AlexNet
  62. 62 ⌨️ VGGNet
  63. 63 ⌨️ ResNet
  64. 64 ⌨️ Coding ResNet from Scratch
  65. 65 ⌨️ MobileNet
  66. 66 ⌨️ EfficientNet
  67. 67 ⌨️ Feature Extraction
  68. 68 ⌨️ Finetuning
  69. 69 ⌨️ Visualizing Intermediate Layers
  70. 70 ⌨️ Gradcam method
  71. 71 ⌨️ Understanding ViTs
  72. 72 ⌨️ Building ViTs from Scratch
  73. 73 ⌨️ FineTuning Huggingface ViT
  74. 74 ⌨️ Model Evaluation with Wandb
  75. 75 ⌨️ Converting TensorFlow Model to Onnx format
  76. 76 ⌨️ Understanding Quantization
  77. 77 ⌨️ Practical Quantization of Onnx Model
  78. 78 ⌨️ Quantization Aware Training
  79. 79 ⌨️ Conversion to TensorFlow Lite
  80. 80 ⌨️ How APIs work
  81. 81 ⌨️ Building an API with FastAPI
  82. 82 ⌨️ Deploying API to the Cloud
  83. 83 ⌨️ Load Testing with Locust
  84. 84 ⌨️ Introduction to Object Detection
  85. 85 ⌨️ Understanding YOLO Algorithm
  86. 86 ⌨️ Dataset Preparation
  87. 87 ⌨️ YOLO Loss
  88. 88 ⌨️ Data Augmentation
  89. 89 ⌨️ Testing
  90. 90 ⌨️ Introduction to Image Generation
  91. 91 ⌨️ Understanding Variational Autoencoders
  92. 92 ⌨️ VAE Training and Digit Generation
  93. 93 ⌨️ Latent Space Visualization
  94. 94 ⌨️ How GANs work
  95. 95 ⌨️ The GAN Loss
  96. 96 ⌨️ Improving GAN Training
  97. 97 ⌨️ Face Generation with GANs
  98. 98 ⌨️ What's Next

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.