Azure AI Fundamentals Certification (AI-900) - Full Course to PASS the Exam

Azure AI Fundamentals Certification (AI-900) - Full Course to PASS the Exam

freeCodeCamp.org via freeCodeCamp Direct link

Layers of Machine Learning

3 of 82

3 of 82

Layers of Machine Learning

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Azure AI Fundamentals Certification (AI-900) - Full Course to PASS the Exam

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Introduction
  2. 2 Exam Guide Breakdown
  3. 3 Layers of Machine Learning
  4. 4 Key Elements of AI
  5. 5 DataSets
  6. 6 Labeling
  7. 7 Supervised and Unsupervised Reinforcement
  8. 8 Neural Networks and Deep Learning
  9. 9 GPU
  10. 10 CUDA
  11. 11 Simple ML Pipeline
  12. 12 Forecast vs Prediction
  13. 13 Metrics
  14. 14 Juypter Notebooks
  15. 15 Regression
  16. 16 Classification
  17. 17 Clustering
  18. 18 Confusion Matrix
  19. 19 Anomaly Detection AI
  20. 20 Computer Vision AI
  21. 21 Natural Language Processing AI
  22. 22 Conversational AI
  23. 23 Responsible AI
  24. 24 Fairness
  25. 25 Reliability and safety
  26. 26 Privacy and security
  27. 27 Inclusiveness
  28. 28 Transparency
  29. 29 Accountability
  30. 30 Guidelines for Human AI Interaction
  31. 31 Follow Along Guidelines for Human AI Interaction
  32. 32 Azure Cognitive Services
  33. 33 Cognitive API Key and Endpoint
  34. 34 Knowledge Mining
  35. 35 Face Service
  36. 36 Speech and Translate Service
  37. 37 Text Analytics
  38. 38 OCR Computer Vision
  39. 39 Form Recognizer
  40. 40 Form Recognizer Custom Models
  41. 41 Form Recognizer Prebuilt Models
  42. 42 LUIS
  43. 43 QnA Maker
  44. 44 Azure Bot Service
  45. 45 Azure Machine Learning Service
  46. 46 Studio Overview
  47. 47 Studio Compute
  48. 48 Studio Data Labeling
  49. 49 Data Stores
  50. 50 Datasets
  51. 51 Experiments
  52. 52 Pipelines
  53. 53 ML Designer
  54. 54 Model Registry
  55. 55 Endpoints
  56. 56 Notebooks
  57. 57 Introduction to AutoML
  58. 58 Data Guard Rails
  59. 59 Automatic Featurization
  60. 60 Model Selection
  61. 61 Explanation
  62. 62 Primary Metrics
  63. 63 Validation Type
  64. 64 Introduction to Custom Vision
  65. 65 Project Types and Domains
  66. 66 Custom Vision Features
  67. 67 Setup
  68. 68 Computer Vision
  69. 69 Custom Vision Classification
  70. 70 Custom Vision Object Detection
  71. 71 Face Service
  72. 72 Form Recognizer
  73. 73 OCR
  74. 74 Text Analysis
  75. 75 QnAMaker
  76. 76 LUIS
  77. 77 AutoML
  78. 78 Designer
  79. 79 MNIST
  80. 80 Data Labeling
  81. 81 Clean up
  82. 82 AI CheatSheet

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.