Completed
Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions
Class Central Classrooms beta
YouTube videos curated by Class Central.
Classroom Contents
Discrete Math I
Automatically move to the next video in the Classroom when playback concludes
- 1 Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions
- 2 Discrete Math - 1.1.2 Implications Converse, Inverse, Contrapositive and Biconditionals
- 3 Discrete Math - 1.1.3 Constructing a Truth Table for Compound Propositions
- 4 Discrete Math 1.2.1 - Translating Propositional Logic Statements
- 5 Discrete Math - 1.2.2 Solving Logic Puzzles
- 6 Discrete Math - 1.2.3 Introduction to Logic Circuits
- 7 Discrete Math - 1.3.1 “Proving” Logical Equivalences with Truth Tables
- 8 Discrete Math - 1.3.2 Key Logical Equivalences Including De Morgan’s Laws
- 9 Discrete Math - 1.3.3 Constructing New Logical Equivalences
- 10 Discrete Math - 1.4.1 Predicate Logic
- 11 Discrete Math - 1.4.2 Quantifiers
- 12 Discrete Math - 1.4.3 Negating and Translating with Quantifiers
- 13 Discrete Math - 1.5.1 Nested Quantifiers and Negations
- 14 Discrete Math - 1.5.2 Translating with Nested Quantifiers
- 15 Discrete Math - 1.6.1 Rules of Inference for Propositional Logic
- 16 Discrete Math - 1.6.2 Rules of Inference for Quantified Statements
- 17 Discrete Math - 1.7.1 Direct Proof
- 18 Discrete Math - 1.7.2 Proof by Contraposition
- 19 Discrete Math - 1.7.3 Proof by Contradiction
- 20 Discrete Math - 1.8.1 Proof by Cases
- 21 Discrete Math - 1.8.2 Proofs of Existence And Uniqueness
- 22 Discrete Math - 2.1.1 Introduction to Sets
- 23 Discrete Math - 2.1.2 Set Relationships
- 24 Discrete Math - 2.2.1 Operations on Sets
- 25 Discrete Math - 2.2.2 Set Identities
- 26 Discrete Math - 2.2.3 Proving Set Identities
- 27 Discrete Math - 2.3.1 Introduction to Functions
- 28 Discrete Math - 2.3.2 One to One and Onto Functions
- 29 Discrete Math - 2.3.3 Inverse Functions and Composition of Functions
- 30 Discrete Math - 2.3.4 Useful Functions to Know
- 31 Discrete Math - 2.4.1 Introduction to Sequences
- 32 Discrete Math - 2.4.2 Recurrence Relations
- 33 Discrete Math - 2.4.3 Summations and Sigma Notation
- 34 Discrete Math - 2.4.4 Summation Properties and Formulas
- 35 Discrete Math - 2.6.1 Matrices and Matrix Operations
- 36 Discrete Math - 2.6.2 Matrix Operations on your TI-84
- 37 Discrete Math - 2.6.3 Zero-One Matrices
- 38 Discrete Math - 3.1.1 Introduction to Algorithms and Pseudo Code
- 39 Discrete Math - 3.1.2 Searching Algorithms
- 40 Discrete Math - 3.1.3 Sorting Algorithms
- 41 Discrete Math - 3.1.4 Optimization Algorithms
- 42 Discrete Math - 4.1.1 Divisibility
- 43 Discrete Math - 4.1.2 Modular Arithmetic
- 44 Discrete Math - 4.2.1 Decimal Expansions from Binary, Octal and Hexadecimal
- 45 Discrete Math - 4.2.2 Binary, Octal and Hexadecimal Expansions From Decimal
- 46 Discrete Math - 4.2.3 Conversions Between Binary, Octal and Hexadecimal Expansions
- 47 Discrete Math - 4.2.4 Algorithms for Integer Operations
- 48 Discrete Math - 4.3.1 Prime Numbers and Their Properties
- 49 Discrete Math - 4.3.2 Greatest Common Divisors and Least Common Multiples
- 50 Discrete Math - 4.3.3 The Euclidean Algorithm
- 51 Discrete Math - 4.3.4 Greatest Common Divisors as Linear Combinations
- 52 Discrete Math - 4.4.1 Solving Linear Congruences Using the Inverse
- 53 Discrete Math - 5.1.1 Proof Using Mathematical Induction - Summation Formulae
- 54 Discrete Math - 5.1.2 Proof Using Mathematical Induction - Inequalities
- 55 Discrete Math - 5.1.3 Proof Using Mathematical Induction - Divisibility
- 56 Discrete Math - 5.2.1 The Well-Ordering Principle and Strong Induction
- 57 Discrete Math - 5.3.1 Revisiting Recursive Definitions
- 58 Discrete Math - 5.3.2 Structural Induction
- 59 Discrete Math - 5.4.1 Recursive Algorithms
- 60 Discrete Math - 6.1.1 Counting Rules
- 61 Discrete Math - 6.3.1 Permutations and Combinations
- 62 Discrete Math - 6.3.2 Counting Rules Practice
- 63 Discrete Math - 6.4.1 The Binomial Theorem
- 64 Discrete Math - 7.1.1 An Intro to Discrete Probability
- 65 Discrete Math - 7.1.2 Discrete Probability Practice
- 66 Discrete Math - 7.2.1 Probability Theory
- 67 Discrete Math - 7.2.2 Random Variables and the Binomial Distribution
- 68 Discrete Math - 8.1.1 Modeling with Recurrence Relations
- 69 Discrete Math - 8.5.1 The Principle of Inclusion Exclusion
- 70 Discrete Math - 9.1.1 Introduction to Relations
- 71 Discrete Math - 9.1.2 Properties of Relations
- 72 Discrete Math - 9.1.3 Combining Relations
- 73 Discrete Math - 9.3.1 Matrix Representations of Relations and Properties
- 74 Discrete Math - 9.3.2 Representing Relations Using Digraphs
- 75 Discrete Math - 9.5.1 Equivalence Relations
- 76 Discrete Math - 10.1.1 Introduction to Graphs
- 77 Discrete Math - 10.2.1 Graph Terminology
- 78 Discrete Math - 10.2.2 Special Types of Graphs
- 79 Discrete Math - 10.2.3 Applications of Graphs
- 80 Discrete Math - 11.1.1 Introduction to Trees