Discrete Math I

Discrete Math I

Kimberly Brehm via YouTube Direct link

Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions

1 of 80

1 of 80

Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions

Class Central Classrooms beta

YouTube videos curated by Class Central.

Classroom Contents

Discrete Math I

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Discrete Math - 1.1.1 Propositions, Negations, Conjunctions and Disjunctions
  2. 2 Discrete Math - 1.1.2 Implications Converse, Inverse, Contrapositive and Biconditionals
  3. 3 Discrete Math - 1.1.3 Constructing a Truth Table for Compound Propositions
  4. 4 Discrete Math 1.2.1 - Translating Propositional Logic Statements
  5. 5 Discrete Math - 1.2.2 Solving Logic Puzzles
  6. 6 Discrete Math - 1.2.3 Introduction to Logic Circuits
  7. 7 Discrete Math - 1.3.1 “Proving” Logical Equivalences with Truth Tables
  8. 8 Discrete Math - 1.3.2 Key Logical Equivalences Including De Morgan’s Laws
  9. 9 Discrete Math - 1.3.3 Constructing New Logical Equivalences
  10. 10 Discrete Math - 1.4.1 Predicate Logic
  11. 11 Discrete Math - 1.4.2 Quantifiers
  12. 12 Discrete Math - 1.4.3 Negating and Translating with Quantifiers
  13. 13 Discrete Math - 1.5.1 Nested Quantifiers and Negations
  14. 14 Discrete Math - 1.5.2 Translating with Nested Quantifiers
  15. 15 Discrete Math - 1.6.1 Rules of Inference for Propositional Logic
  16. 16 Discrete Math - 1.6.2 Rules of Inference for Quantified Statements
  17. 17 Discrete Math - 1.7.1 Direct Proof
  18. 18 Discrete Math - 1.7.2 Proof by Contraposition
  19. 19 Discrete Math - 1.7.3 Proof by Contradiction
  20. 20 Discrete Math - 1.8.1 Proof by Cases
  21. 21 Discrete Math - 1.8.2 Proofs of Existence And Uniqueness
  22. 22 Discrete Math - 2.1.1 Introduction to Sets
  23. 23 Discrete Math - 2.1.2 Set Relationships
  24. 24 Discrete Math - 2.2.1 Operations on Sets
  25. 25 Discrete Math - 2.2.2 Set Identities
  26. 26 Discrete Math - 2.2.3 Proving Set Identities
  27. 27 Discrete Math - 2.3.1 Introduction to Functions
  28. 28 Discrete Math - 2.3.2 One to One and Onto Functions
  29. 29 Discrete Math - 2.3.3 Inverse Functions and Composition of Functions
  30. 30 Discrete Math - 2.3.4 Useful Functions to Know
  31. 31 Discrete Math - 2.4.1 Introduction to Sequences
  32. 32 Discrete Math - 2.4.2 Recurrence Relations
  33. 33 Discrete Math - 2.4.3 Summations and Sigma Notation
  34. 34 Discrete Math - 2.4.4 Summation Properties and Formulas
  35. 35 Discrete Math - 2.6.1 Matrices and Matrix Operations
  36. 36 Discrete Math - 2.6.2 Matrix Operations on your TI-84
  37. 37 Discrete Math - 2.6.3 Zero-One Matrices
  38. 38 Discrete Math - 3.1.1 Introduction to Algorithms and Pseudo Code
  39. 39 Discrete Math - 3.1.2 Searching Algorithms
  40. 40 Discrete Math - 3.1.3 Sorting Algorithms
  41. 41 Discrete Math - 3.1.4 Optimization Algorithms
  42. 42 Discrete Math - 4.1.1 Divisibility
  43. 43 Discrete Math - 4.1.2 Modular Arithmetic
  44. 44 Discrete Math - 4.2.1 Decimal Expansions from Binary, Octal and Hexadecimal
  45. 45 Discrete Math - 4.2.2 Binary, Octal and Hexadecimal Expansions From Decimal
  46. 46 Discrete Math - 4.2.3 Conversions Between Binary, Octal and Hexadecimal Expansions
  47. 47 Discrete Math - 4.2.4 Algorithms for Integer Operations
  48. 48 Discrete Math - 4.3.1 Prime Numbers and Their Properties
  49. 49 Discrete Math - 4.3.2 Greatest Common Divisors and Least Common Multiples
  50. 50 Discrete Math - 4.3.3 The Euclidean Algorithm
  51. 51 Discrete Math - 4.3.4 Greatest Common Divisors as Linear Combinations
  52. 52 Discrete Math - 4.4.1 Solving Linear Congruences Using the Inverse
  53. 53 Discrete Math - 5.1.1 Proof Using Mathematical Induction - Summation Formulae
  54. 54 Discrete Math - 5.1.2 Proof Using Mathematical Induction - Inequalities
  55. 55 Discrete Math - 5.1.3 Proof Using Mathematical Induction - Divisibility
  56. 56 Discrete Math - 5.2.1 The Well-Ordering Principle and Strong Induction
  57. 57 Discrete Math - 5.3.1 Revisiting Recursive Definitions
  58. 58 Discrete Math - 5.3.2 Structural Induction
  59. 59 Discrete Math - 5.4.1 Recursive Algorithms
  60. 60 Discrete Math - 6.1.1 Counting Rules
  61. 61 Discrete Math - 6.3.1 Permutations and Combinations
  62. 62 Discrete Math - 6.3.2 Counting Rules Practice
  63. 63 Discrete Math - 6.4.1 The Binomial Theorem
  64. 64 Discrete Math - 7.1.1 An Intro to Discrete Probability
  65. 65 Discrete Math - 7.1.2 Discrete Probability Practice
  66. 66 Discrete Math - 7.2.1 Probability Theory
  67. 67 Discrete Math - 7.2.2 Random Variables and the Binomial Distribution
  68. 68 Discrete Math - 8.1.1 Modeling with Recurrence Relations
  69. 69 Discrete Math - 8.5.1 The Principle of Inclusion Exclusion
  70. 70 Discrete Math - 9.1.1 Introduction to Relations
  71. 71 Discrete Math - 9.1.2 Properties of Relations
  72. 72 Discrete Math - 9.1.3 Combining Relations
  73. 73 Discrete Math - 9.3.1 Matrix Representations of Relations and Properties
  74. 74 Discrete Math - 9.3.2 Representing Relations Using Digraphs
  75. 75 Discrete Math - 9.5.1 Equivalence Relations
  76. 76 Discrete Math - 10.1.1 Introduction to Graphs
  77. 77 Discrete Math - 10.2.1 Graph Terminology
  78. 78 Discrete Math - 10.2.2 Special Types of Graphs
  79. 79 Discrete Math - 10.2.3 Applications of Graphs
  80. 80 Discrete Math - 11.1.1 Introduction to Trees

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.