Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Jack Characters as Generating Series of Bipartite Maps and Proof of Lassalle's Conjecture

Institute for Pure & Applied Mathematics (IPAM) via YouTube

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 50-minute lecture on Jack characters and their connection to bipartite maps, presented by Houcine Ben Dali from the Université de Lorraine at IPAM's Integrability and Algebraic Combinatorics Workshop. Delve into the relationship between representation theory of the symmetric group and generating series of maps on orientable surfaces. Discover how Jack polynomials, a one-parameter deformation of Schur functions, are linked to the enumeration of non-orientable maps with a "non-orientability" weight. Examine an explicit formula for the power-sum expansion of Jack polynomials, which leads to the proof of Lassalle's 2008 conjecture on the integrality and positivity of Jack characters in Stanley's coordinates. Gain insights into this collaborative work with Maciej Dolega, advancing our understanding of algebraic combinatorics and representation theory.

Syllabus

Houcine Ben Dali - Jack characters as series of bipartite maps and proof of Lassalle’s conjecture

Taught by

Institute for Pure & Applied Mathematics (IPAM)

Reviews

Start your review of Jack Characters as Generating Series of Bipartite Maps and Proof of Lassalle's Conjecture

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.