Overview
Syllabus
Intro
Privacy: a challenge in modern data curation
The U.S. Census Bureau adopts differential privacy
The mechanism of differential privacy
Differential privacy: benefits and challenges
Situating our (statistical x privacy) framework
Statistical inference from privatized data
Existing solutions
A traditional Gibbs sampler
A general Metropolis-within Gibbs sampler
Requirements, run time, and efficiency
Ergodicity of the proposed sampler
Application: a naïve Bayes classifier
Simulation setup
Posterior mean
Frequentist coverage
Empirical acceptance rates
Summary
Taught by
Fields Institute