Overview
Syllabus
Docker Instruction.
[PyTorch] Lab-01-1 Tensor Manipulation 1.
[PyTorch] Lab-01-2 Tensor Manipulation 2.
[PyTorch] Lab-02 Linear regression.
[PyTorch] Lab-03 Deeper Look at GD.
[PyTorch] Lab-04-1 Multivariable Linear regression.
[PyTorch] Lab-04-2 Loading Data.
[PyTorch] Lab-05 Logistic Regression.
[PyTorch] Lab-06 Softmax Classification.
[PyTorch] Lab-07-1 Tips.
[PyTorch] Lab-07-2 MNIST Introduction.
[PyTorch] Lab-08-1 Perceptron.
[PyTorch] Lab-08-2 Multi Layer Perceptron.
[PyTorch] Lab-09-1 ReLU.
[PyTorch] Lab-09-2 Weight initialization.
[PyTorch] Lab-09-3 Dropout.
[PyTorch] Lab-09-4 Batch Normalization.
[PyTorch] Lab-10-0 Convolution Neural Networkintro.
[PyTorch] Lab-10-1 Convolution.
[PyTorch] Lab-10-2 mnist cnn.
[PyTorch] Lab-10-3 visdom.
[PyTorch] Lab-10-4-1 ImageFolder1.
[PyTorch] Lab-10-4-2 ImageFolder2.
[PyTorch] Lab-10-5 Advance CNN(VGG).
[PyTorch] Lab-10-6-1 Advanced CNN(RESNET)1.
[PyTorch] Lab-10-6-2 Advanced CNN(RESNET)2.
[PyTorch] Lab-10-7 Next step of CNN.
[PyTorch] Lab-11-0 RNN intro.
[PyTorch] Lab-11-1 RNN basics.
[PyTorch] Lab-11-2 RNN hihello and charseq.
[PyTorch] Lab-11-3 RNN Long sequence.
[PyTorch] Lab-11-4 RNN timeseries.
[PyTorch] Lab-11-5 RNN seq2seq.
[PyTorch] Lab-11-6 RNN PackedSequence.
Taught by
Deep Learning Zero To All