Overview
Syllabus
Axioms of Quantum Mechanics - Lec01 - Frederic Schuller.
Banach Spaces - Lec02 - Frederic Schuller.
Separable Hilbert spaces - L03 - Frederic Schuller.
Projectors,bars and kets - Lec 04 - Frederic Schuller.
Measure Theory -Lec05- Frederic Schuller.
Integration of measurable functions - Lec06 - Frederic Schuller.
Self adjoint and essentially self-adjoint operators - Lec 07 - Frederic Schuller.
Spectra and perturbation theory - L08 - Frederic Schuller.
Case study: momentum operator - Lec09 - Frederic Schuller.
Inverse Spectral Theorem - L10 - Frederic Schuller.
Spectral Theorem - L11 - Frederic Schuller.
Stone's theorem & construction of observables - L12 - Frederic Schuller.
Spin - L13 - Frederic Schuller.
Composite systems - L14 - Frederic Schuller.
Total spin of composite system - L15 - Frederic Schuller.
Quantum Harmonic Oscillator - L16 - Frederic Schuller.
Quantum Harmonic Oscillator - L17 - Frederic Schuller.
The Fourier Operator - L18 - Frederic Schuller.
The Schrodinger Operator - L19 - Frederic Schuller.
Periodic potentials - L20 - Frederic Schuller.
Periodic potentials - L21 - Frederic Schuller.
Taught by
Frederic Schuller